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1. INTRODUCTION

1.1 Background

An important quality attribute of a computer system

is the degree to which it can be relied upon to perform

its intended function. Evaluation, prediction, and improve-

ment of this attribute have been of concern to designers and

users of computers from the early days of their evolution.

Until the late sixties, attention was almost solely on the

hardware related performance of the systeri. In the early

seventies, software also became a matter of concern, pri-

marily due to a continuing increase in the cost of software

relative to hardware, in both the development and opera-

tional phases of the system.

Software is essentially an instrument for transforming

a discrete set of inputs into a discrete set of outputs.

Since, to a large extent, software is produced by humans,

the finished product is often imperfect. It is imperfect

in the sense that a discrepancy exists between what the

program can do and what the user or the computing environ-

ment wants it to do. These discrepancies are called soft-

ware faults.

Even if we know that software contains faults, we

generally do not know their exact identity. Currently,

there are two approaches for exposing software faults:

1-1 ,



program proving and program testing. Program proving,

though formal and mathematical, is still an imperfect

tool for verifying program correctness. Program testing

is more practical but somewhat heuristic.

Due to the imperfectness of these approaches in

assuring a correct program, a metric is needed which re-

flects the degree of program correctness and which can be

used in planning and controlling additional resources (time

and money) needed for enhancing softw 4uality. One such

quantifiable metric of quality that b become popular in

software engineering practice is soft reliability.

A number of models have been proposed during the last

ten years for assessing software reliability. However, very

few efforts (ANG80, GOE831 have been undertaken to evaluate

their assumptions and limitations. Also, information

about the applicability of these models during various

phases of software development has been lacking.

This report presents a summary and evaluation of most

of the available models for software reliability assessment.

A discussion of software quality, software testing, and

software reliability is provided in Section 2, and

a brief description of the times between failures and

A study sponsored by RADC is currently in progress to assess
the applicability of selected models to field data from an
on-going project.
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failure count software reliability models is given in

Sections 3 and 4, respectively. Fault seeding and input

domain based models are described in Section 5. Assump-

tions, limitations and applicability of these models are

discussed in Section 6. A step by step procedure for

developing a software reliability model is given in

Secticn 7, and some of the steps are illustrated via

numerical examples.

4
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1.2 Limitations and Applicability of the Guidebook

The purpose of this guidebook is to provide a compre-

hensive treatment of most of the analytical models proposed

during the last ten years for software reliability assess-

ment. As stated above, the guidebook also contains a dis-

cussion of the model assumptions, their limitations and

their applicability during various phases of the software

life cycle.

The state-of-the-art of software reliability modeling

is akin to a moving target. It was felt, however, that the

time had come to document the relevant material about the

available techniques so that future efforts could be focussed

on resolving the unsolved problems. This viewpoint played

a key role in the treatment of the material presented here.

Specifically, the inclusion of any model in the guidebook
does not necessarily imply that such a model is the right

one to use for software reliability assessment. A decision

about the usability or otherwise of a medel in a given

testing situation should be based on a clear understanding

of the assumpti-ns and limitations of that model vis-a-vis

the actual testing process.

The following points should be helpful in determining

the limitations and applicability of this guidebook.

1. The guidebook does not recommend any particular model

or a class of models. It encourages the user to under-

stand the model assumptions and its limitations before

1-4
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using it in a given situation.

2. The method,.'ogy described in the guidebook for developing

a reliability model is a general one and should be usable

in many situations. However, other approaches may be

mere appropriate in certain developmv .t environments and

should be preferred.

3. Most of the models use time (execution or calendar) as

a basis for studying fault occurrence processes. The

entity time should be interpreted in a broader sense.

Any other measure which may be more relevant in a given

situation can be used in lieu of time if the model

assumptions are satisfied. Some examples of such

measures are lines of code tested, number of functions

tested, and number of test cases executed.

4. The models described in the guidebook treat the soft-

ware product as a black box at a macro level. They do

not explicitly take into account the effects of develop-

ment methodologies and support tools. If such con-

siderations are of interest and concern, the models

described here may not be the appropriate ones to use.

5. Most of the models apparently were developed for use

during the system testing stage to estimate soft-

ware reliability in the field. Many of these, however,

can also be used in other development phases if the

underlying assumptions are satisfied.

1-5



2. SOFTWARE QUALITY, TESTING, AND RELIABILITY

2.1 Software Quality Problem

The importance of software quality in determining the

performance of a computer system has been well recognized

during the last decade. Currently, the low quality of

software is the limiting factor in achieving overall system

quality. Among the reasons for low software quality are

the need for extensive human involvement in software develop-

ment and the uncertainty and complexity of system applica-

tions.

Software quality assessment is different from hard-

ware quality assessment. The latter is primarily concerned

with the accuracy of fabricating (copying) the hardware

design. Controlling the quality of fabricated designs is

known in engineering as Quality Control. This aspect of

quality has been traditionally quantified by using statistical

techniques. The quality of software, on the other hand, is

determined primarily by the quality of the design. The

development and implementation processes that go into the

production of software cannot be easily quantified at

: - present.

The software development process can be divided

roughly into five phases:

(1) Requirements analysis. Requirements analysis

involves understanding the user requirements

2-1



and expressing these requirements in the form

of formal or informal specifications.

(2) Design. The design phase further refines the

specifications to come up with computer com-

patible specifications.

(3) Programming. Programming is the act of imple-

menting the specifications in a specified

computing environment. In general, programming

involves coding; however, pre-packaged modules

or program generations may be available to

satisfy the specifications.

(4) Verification and validation. Verification and

validation is the process of convincing the

developer and the user that the program meets

the specificaticns. Two complementary techni-

ques are used to verify and validate the

correctness of a program: (a) proving, and

(b) testing. Program proving involves con-

structing a finite sequence of logical state-

ments ending in the statement to be proved

(usually the output specification). Program

testing, on the other hand, involves the sym-

bolic or physical execution of a set of test

cases with the intent of exposing embedded

faults, if any, in the program. Because of

the complexity of current software applications,

software verification is the most tiring, expen-

sive and unpredictable phase of software develop-

2-.2 -



ment. Roughly, 40%-50% of total development

effort is spent on software verification and

validation.

(5) Operation and maintenance. Operation and main-

tenance refer to the actual usage of the soft-

ware and all activities pertaining to correc-

tion of errors during operation, upgrading to

maintain compatibility with the changing environ-

ment, and the introduction of minor or major

improvements in the software.

To minimize and possibly eliminate the problem of low

quality software, software engineers emulated the statis-

tical standards of traditional engineering quality control.

A number of software metrics and models have been proposed

to provide numerical measures of software quality. Some

metrics assign numerical weights to the number of operands/

operators, number of branches, module sizes, number of GO TO

statements, etc. and use these as measures of software

quality. Sometimes, a mathematical formula is used to

weigh these measures and obtain a single measure of quality.

Some approaches in this area involve correlating or regressing

software metrics to quality measures such as the number of

observed errors. For example, studies have been undertaken

to analyze correlations between the number of errors de-

tected, siz.e of software, number of operators/operands, etc.

[BAS831.
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A criticism of this static approach is the fact that

the acceptability and quality of the implemented software

design cannot be solely determined by the number of

operators/operands, number of unconditional branches,

module size or the like. Software quality assessment

must be more than a bean-counting function. Assessment

of software quality should, theoretically, take into ac-

count all the processes that go into the design, programming,

verification and validation of the software.

Software errors and their impact on quality*

The imperfectness of existing design, coding, veri-

fication and validation techniques, as well as imperfectness

of humans, causes omission and commission of errors in the

software. It is the nature and number of these errors that

effect the quality of the produced software.

A software error is any discrepancy between what the

software can do versus what the user or the computing en-

vironment (i.e., physical machine, operating system,

compilers, etc.) wants it to do. It can be as trivial as

a syntax or semantic error or as complex as a run-time,

specification, or performance error. Run-time errors,

occurring during actual program execution, may be in the

form of domain, computational (logic), or non-termination

The terms error and fault are sometimes used interchange-
ably in this report. Definitions of selected terms in
software engineering are given in Appendix F.

2-4
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errors. Specification errors, occurring as a result of

discrepancies between user requirements and the statement

of specifications, can be due to incomplete, inconsistent,

or ambiguous specifications. Performance errors exist

whenever a discrepancy exists between the actual performance

(efficiency) of the program and its desired or specified

performance. (For a classification and description of

software errors, see Appendix A.)

Software errors detected late in the software develop-

ment process are much more expensive to eliminate than errors

discovered early in the development process. It is, there-

fore, desirable that software errors which directly affect

the quality of software, should be prevented and exposed as

early in the software development process as possible.

Basically, there are two complimentary approaches for

achieving this objective:

(1) Reduce or prevent the number of committed soft-

ware errors through better requirement analysis,

specification and design techniques, and better

programming/implementation disciplines.

(2) Increase error exposure through improved veri-

-4 fication and validation techniques. Verifica-

tion and validation (e.g., testing) should be

distributed throughout the development process

to assure early exposure of errors. Monitoring

of software quality should be done at each phase

of software development.

2-5



It is well recognized that the quality of software

can be built into it during development by using effective

software design methods for codinR disciplines. A good

design almost always results in good implementation, but

a poor design almost always does not. A number of design

philosophies are becoming popular in practice: (1) func-

tional decomposition design, e.g., functional decomposi-

tion method, softech design method, top-down design method

[BER81, PET77, GRI78]; (2) data flow design, e.g. Constantine's

structured design method, Myers' composite design method

[BER81, 14YE75]. and (3) data structure design, e.g.

Warnier/Orr Logical Construction of Programs method,

Jackson design method [BER8I, ORR78, JAC76].

Structured programming, or programming using re-

stricted constructs such as IF THEN (ELSE), DO WHILE,

REPEAT UNTIL, etc. and avoidance of GO TO statements, is

becoming popular as an effective coding discipline.

Maximum and early exposure of errors during the soft-

ware development process requires using reliable proving

and testing strategies at the right phase of the develop-

ment cycle. However, one should be aware that the program

proving and program testing remain imperfect tools for

verifying program correctness. Neither one of them can,

in practice, guarantee program correctness. Proving and

testing should not be viewed as competing tools; they are,

in fact, complementary methods for decreasing the likeli-

hood of program failure JG0077].
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2.2 Software Testing

Software testing is largely a heuristic process. There

have been attempts to formulate a theoretical foundation of

software testing (see [G0077]). The basic problem of

testing is to find a test selection rule that constitutes

a reliable test. A reliable test is a test which is suffi-

cient for verifying the program's correctness. To make the

testing effort practical -- requiring less effort and cost

to use -- one would, naturally, pick only a small subset of

the input domain that hopefully would reveal all the errors

in a program. Howden [HOW76] argued that this is impossible

since one can always create a program which can defeat the

test. He contented himself with finding a testing strategy

that is reliable for a subclass of programs. It is well

known that testing can only reveal the presence of errors,

never their absence.

Deterministic testing techniques can be further grouped

into the structure dependent and the structure independent

techniques. Structure dependent or white box testing views

a program as a directed flow graph in which a node represents

a set of statements and an edge is the control flow of the

program. Test cases are generated based on the program's

flow graph. Structure independent testing or black box

testing generates test cases based on the specifications

(functionsl of the program. Testing the specified func-

tions (functional testing) of a program can be a partially

2-7



random process if test cases are generated randomly for

each function in the program. It is not a purely random

process since each function has to be tested. On the other

hand, if the test cases for each function are generated

based on the program structure, the testing process becomes

deterministic.

A connection exists between structure independent and

structure dependent testing. The program paths from the

program flow graph are really nothing but partitions of

the input domain. All paths leading to an output or coi'bi-

nation of outputs are nothing but equivalent partitions

which will cause the execution of the path.

Popular examples for structure depend-ent testing are

path testing, symbolic testing, domain testing, and muta-

tion testing. For structure independent testing, we have

equivalence partitioning, boundary value testinq, and

cause-effect graphing. Path testing requires that all

edge-edge (path) transitions in the program flow granh

be executed. A less stringent test criterion is branch

testing which only requires coverage of all the edges

(branches) of the graph. A further less stringent testing

criterion is statement testing which merely requires co-

verage of all the n,-des of the program graph.

Symbolic execution utilizes symbolic input to come

up with outputs which are symbolic expressions of the in-

puts. Domain testing is currently limited to linear pro-

grams because of the difficulty, in general, in deriving

2-8



test cases from the path predicates of the program. The

path predicate of a path is the condition that a set of

input data has to satisfy in order for a path to be tra-

versed at run-time. Mutation testing makes a series of

minor changes to the program, creating a set of programs

known as mutations. Test data is generated to cause

every inequivalent mutation to give incorrect results on

some input. Equivalence partitioning Dartitions the

specified input domain into a finite number of equival-

ence classes. Test cases are then derived for each class

pretending that the test case is representative of all

members of that class. Boundary-value testing is similar

to equivalence partitioning but requires that one or more

elements from an equivalence class be selected such that

each edge of the equivalence class is subjected to a test.

Cause-effect graphing uses a cause-effect graph to generate

test cases. It determines combinations of input conditions

which map to a specific output condition.

A practical approach for verifying the correctness

of real wcrld software would be a combination of testing

and proving coupled with the aid of software tools such

as: debugging nackages, program instrumentation, software/

hardware monitors, simulators, compilers, link editors,

static and dynamic analyzers, regression test systems,

test case generators. Currently, this is the only viable

approach for maximizing the exposure of embedded errors

2-9



in software. An effective software verification plan

should cover the whole development process so that errors

are exposed and corrected as early as possible.

2-10

• .

I



2.3 Software Reliability

A quantifiable measure of quality that has become

popular in software engineering practice is software relia-

bility. It was necessitated by the inability of existing

software verificc'tion and validation techniques to guarantee

correct software.

There are a number of views as to what software

reliability is and how it should be quantified. Some

people believe that this measure should be binary in

nature so that an incorrect program would have zero relia-

bility while a perfect program would have a reliability

one. This view parallels that of program proving whereby

the program is either correct or incorrect. Others, how-

ever, feel that software reliability should be defined as

the relative frequency (or percentage) of the times that

the program works as intended by the user. This view is

similar to that taken in testing where a percentage of

I the successful cases is used as a measure of program

quality.

' IAccording to the latter viewpoint, software relia-

bility is a probabilistic measure and is defined as the

probability that a software error which causes discrepan-

cies from specified requirements in a specified environment

does not lead to a failure during a specified exposure
period. Note that the probabilistic nature of this measure
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is due to the uncertainty in the usage of the various soft-

ware functions. Such discrepancies are also known as soft-

ware faults. The specified requirements refer to the

functional requirements desired by the user. Specified

environment means that the software need be correct only

for its specified inputs and specified computing environ-

ment. The specified exposure period may mean: (1) a single

run or a number of runs; or (2) time unit expressed as CPU

time units or calendar time. In simple terms, if a user

executes a software product several times (according to

the distribution of his needs) and 95% of the time the

software provided him with acceptable (correct) results,

then the software is said to be 95% reliable.

A more precise definition of software reliability

which captures the points mentioned above follows [MOR83)

Let E be a class of faults, defined arbitrarily, and T be

a measure of relevant time, the units of which are dictated

by the application at hand. Then the reliability of the

software package with respect to the class of faults E and

with respect to the metric T, is the probability that no

error of the class occurs during the execution of the pro-

gram for a prespecified period of relevant time.

Assessment of software reliability can be a non-

trivial process. The reasons are as follows:

(1) Most software is large and complex. Embedded
faults may not be easily detectable by existing

verification and validation techniques.

2-12
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(2) Users are not always 100 percent certain about

their requirements. User input and functional

distributions are not easily predictable.

(3) Resources (time and money) allocated for soft-

ware development are always limited; hence, the

developer may not have enough time and money to

test for all possible user inputs.

Granting that software reliability can be measured

despite the above obstacles, a logical question is what

purpose does it serve. Software reliability is a useful

measure in planning and controlling resources (time and

money) during the software development process so that high

quality software can be developed. It is also a useful

measure for giving the user confidence about software per-

formance. Planning and controlling testing resources via

the software reliability measure can be done by balancing

the additional cost of testing and the corresponding im-

provement in software reliability. As more and more errors

are exposed by the testing and verification process, the

additional cost of exposing the remaining errors generally

rises very quickly. Thus, there is a point beyond which

continuation of testing to further improve the reliability

*of software can be justified only if such improvement is

cost effective. An objective measure like software relia-

bility can be used to study such a trade-off.

The current approaches for measuring software relia-

bility, basically, parallel those of hardware reliability
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assessment. However, appropriate modifications have been

made before extending the hardware theory to software to

account for the inherent differences between software and

hardware. Hardware exhibits mixtures of decreasing and

increasing failure rates. The decreasing failure rate is

due to the fact that, as time on the hardware system accumu-

lates, failures (most probably from design errors) are en-

countered and the errors fixed. The increasing failure

rate is due primarily to hardware component wearout or

aging. There is no such thing as wearout in software.

It is true that software may become obsolete because of

changes in the user and computing environment, but once

we modify the software to reflect these changes, we no

longer talk of the same software but of an enhanced or

modified version. Like hardware, software exhibits a

decreasing failure rate (improvement in quality) as the

usage time on the system accumulates and errors (due to

design and coding) are fixed. Thus, a hardware-based

approach to software reliability assessment can be used

only in appropriate environments.

It should be noted that an assessed value of the

software reliability measure is always relative to a given

user environment. Two users exercising two different sets

of paths in the same software may have different values of

the reliability of software.

Anumber of analytical approaches have been developed
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to address the problem of software reliability assessment.

These approaches are based mainly on the failure history

of the software. They may be divided into time-dependent

and time-independent approaches. The time dependent ap-

proach is based on either times between software failures

or on failure counts in specified time intervals. The time

independent approach uses either fault seeding methods or

input domain analysis.

In the time dependent approach, the times between

failures or the number of failures observed in a sequence

of test time intervals are used to estimate the shape of

the hypothesized failure (hazard) rate function. From the

estimated failure rate function, one can estimate the

number of faults remaining in the software, mean-time-to-

failure (MTTF), and software reliability.

In the fault-seeding approach, a known number of

faults is seeded (planted) in the program. After testing,

the numbers of exposed seeded and indigenous faL'ts are

counted. Using combinatorics and maximum likelihood esti-

mation, one can then estimate the number of indigenous

faults in the program and also the reliability of the pro-

gram.

In the input domain based models, the procedure is to

generate a set of test cases from an input (operational)

distribution. The difficulty of estimating the input dis-

tribution is overcome by partitioning the input domain into

2-15
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a set of equivalence classes. An equivalence class is

usually associated with a program or logic path. The relia-

bility measure is then calculated from the observed failures

after symbolically or physically executing the generated

test cases.

The reliability of software grows as it evolves in

its life cycle. Verification-and testing should be per-

formed as early as the design stage to expose design errors.

If possible, the reliability of the design should also be

assessed. Currently, no tool or model is available to pre-

dict the reliability of the software as early as the design

stage. Testing, to expose errors after the design phase,

is usually done in stages. The first stage of testing is

done at the module level by the implementing programmer.

Modules are then integrated to form partial or the whole

system. The system is then subjected to integration testing

(also known as alpha testing). Software is then given to
several "friendly users" who are willing to use the software

in an operational environment. The problems encountered

with the software are reported. This is known as beta

testing. Finally, software is released to users and cor-

rections are issued against it as problems are reported

$ by users.

iEssentially, this overall testing process makes soft-

ware reliability a growth process. However, the reliability
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of software can decrease as a result of the software correc-

tion (debugging) process. This happens when additional

errors are accidentally injected into the system while

removing some other errors. Switching from module testing

to integration testing to beta testing may also disturb the

perceived software reliability growth process. A temporary

surge of exposed errors may be observed when we switch to

different test strategies during the software development

process. The use of better design, coding and verifica-

tion techniques, coupled with effective software manage-

ment techniques, would reduce the likelihood of software

reliability deteriorating over its life cycle.

2
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2.4 Models for Software Reliability Assessment

A number of models have been proposed during the last

ten years for assessing software reliability. Most of them

are based on the failure history of software. They can be

classified according to the nature of the failure process

studied as indicated below:

1) Times Between Failures (TBF) Models

In this class of models the process under study

is the time between failures. The general ap-

proach is to assume that the time between, say,

the (i-l)st and the ith failures follows a dis-

tribution whose parameters depend on the number

of faults remaining in the program during this

interval. Estimates of the parameters are ob-

tained from the observed values of times between

failures. Estimates of software reliability

mean time to next failure, etc. are then ob-

tained from the appropriate c, ations.

The interest in this class of models is in the

number of failures in specified time intervals

rather than in the times between failures. The

failure counts are assumed to follow a known

stochastic process with a time dependent dis-

crete or continuous failure rate. Parameters

of the failure rate can be estimated from the

2-18
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observed values of failure counts or from failure

times. Estimates of software reliability, mean

time to next failure, etc. can be obtained from

the relevant equations.

3) Fault Seeding (FS) Models

The basic approach in this class of models is to

"seed" a known number of faults in a program which

is assumed to have an unknown number of indigenous

faults. The program is tested and the observed

numbers of exposed seeded and indigenous faults

are counted. From these, an estimate of the fault

content of the program prior to seeding is obtained

and used to assess software reliability, etc.

4) Input Domain Based (IDB) Models

The basic approach taken here is to generate a

set of test cases from an input distribution which

is assumed to be representative of the operational

usage of the program. Because of the difficulty

in obtaining this distribution, the input domain

is partitioned into a set of equivalence classes,

each of which is usually associated with a program

path. An estimate of program reliability is ob-

tained from the failures observed during physical

or symbolic execution of the test cases sampled

from the input domain.
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Another classification of the models in (1) and (2)

above can be based on the inference viewpoint, classical

or Bayesian. However, most of the work has been along

classical lines.

-I
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3. TIMES BETWEEN FAILURES (TBF) MODELS

This is one of the earliest classes of models pro-

posed for software reliability. When interest is in

modeling times between failures, it is expected that the

successive failure times will get longer as faults are

removed from the software systen, For a given set of ob-

served values this may not be exactly so due to the fact

that failure times are random variables and observed values

are subject to statistical fluctuations.

A number of models have been proposed to describe

such failures in a software system. Let a random variable

Ti denote the time between the (i-l)st and the ith failures.

Basically, the models assume that T. follows a known distri-i

bution whose parameters depend on the number of faults re-

maining in the system after the (i-l)st failure. The

assumed distribution is supposed to reflect the improvement

in software quality as faults are detected and removed from

~the system.

Various models for the times between failures phenomenon

are described in the following subsections. A detailed de-

scription of selected models is given in Appendix C.

Note that the models described below differ primarily4 in their treatment of the nature of the hazard function

associated with the successive software failures.
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The hazard function (also known as hazard rate or

failure rate) z(t) is defined as the conditional proba-

bility that a fault is exposed in the interval t to t+ 6t,

given that the fault did not occur prior to time t. The

reliability function R(t) is the orobability that no

faults will occur from time zero to time t. Also, the

functions z(t) and R(t) are related in the following

form:

z(t) = [-dR(t)/dt]/R(t)

or t

R(t) = exp(-f z(x)dx)

0

Also, mean-time-to-failure (MTTF) = 1/z(t).

Estimation of reliability, once the hazard function

z(t) is known is thus straightforward.

For details of hazard function and other relevant

reliability concepts, see Anvendix B.

1
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3.1 Jelinski and Moranda De-eutrophication Model (Model TBFI)

This is one of the earliest and probably the most com-

monly used models for assessing software reliability [JEL72].

It assumes that there are N software faults at the start of

testing, each is independent of others and is equally likely

to cause a failure during testing. A detected fault is

removed with certainty in negligible time and no new faults

are introduced during the debugging process. The software

failure rate or the hazard function at any time is assumed

to be proportional to the current fault content of the

tested program. In other words, the hazard function during

ti , the time between the (i-l)st and ith failures is given

by

Z(t i) = O[N - (i-1)],

where 0 is a proportionality constant.

Note that this hazard function is constant between

failures but decreases in steps of size following the

removal of each defect.

A typical plot of the hazard function for N = 100,

= .01 is shown in Figure 3.1. Details of this model

are given in Appendix C-l.
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3.2 Schick and Wolverton Linear Model (Model TBF2)

This model is based on the same assumptions as the

TBFI model except that the hazard function at any time is

assumed to be proportional to the current fault content of

the program as well as to the time elapsed since the last

failure (SCH73], Under these assumptions the hazard function

z(ti) between the (i-1)st and the ith failures is given by

z(t i) = {N - (i-l)}t i

where o is a proportionality constant and the other quantities

are as defined earlier.

Note that in some papers t. has been taken to be the1

cumulative time from the beginning of testing. That interpre-

tation of t. seens to be inconsistent with the interpretation1

in the original paper (SCH73].

We note that the above hazard rate is linear with time

within each failure interval, returns to zero at the occurrence

of a failure and increases linearly again but at a reduced

slope, the decrease in slope being proportional to t. This

behavior for N = 1SO, ..02 is shown in Fig. 3.2. Details

of this model are given in Appendix C-2.

3.2.1 Schick and lVolverton Parabolic Model (Model TBF3)

This is a modification of Model TBF2 [SCH78] whereby the

hazard function is assumed to be parabolic in test time and

is given by
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z(t i ) = p[N- (i-l)I(-at + bt. + c)

or
z(t i  = c[N- (i-1)] + ,IN- (i-1)](-a { 2 + bt

where a,b,c are constants and the other quantities are as

defined above.

This function consists of two components. The first

is basically the hazard function of model TBF1, The super-

imposition of the second term indicates that the likelihood

of a failure occurring increases rapidly as the test time

accumulates within a testing interval. At failure times

(xi = 0), the hazard function is proportional to that of

model TBF1,

I
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3.3 Geometric De-eutrophication Model (Model TBF3)

This is a variation of the TBFl model (3.1) and was

proposed by Moranda [MOR7SMOR81] to describe testing situ-

ations where faults are not removed until the occurrence of

a fatal one at which time the accumulated group of faults

is removed. In such a situation, the hazard function after

a restart can be assumed to be a fraction of the rate which

attained when the system crashed. For this model, the

hazard function during the ith testing interval is given by

z(ti) = Dkil,

where

D is the fault detection rate during the first interval,

and

k is a constant, 0 < k < 1.

A typical plot of z(ti ) for D = 0.5 and k = 0.95

is shown in Figure 3.3. Details of the model are given

in Appendix C-3.

3.3.1 Hybrid Geometric Poisson Model (Model TBF4)

This model was proposed by Moranda LMOR76] as a candi-

date fcr depicting the initial segment of hardware system

testing. It covers the burn in and steady state interval.

It is a composite of the geometric process and a pure Poisson

model. The hazard function for this model is
i-l

z(ti) = Dk + 6

where 6 is the parameter of the Poisson process, and D and K

are as defined above.

3-8
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3- 4 Goel and Okumoto Imperfect Debugging Model (Model TBFS)

All of the models discussed so far assume that the

faults are removed with certainty when detected. However,

in practice [see MIY7S,THA76] that is not always the case.

To overcome this limitation, Goel and Okumoto [GOE78b,GOE78d,

GOE79b] proposed an imperfect debugging model IDM] which

is basically an extension of model TBF1 tJEL72].

In this model, the number of faults in the system at

time t, X(t), is treated as a Markov process whose transi-

tion probabilities are governed by the probability of im-

perfect debugging. Times between the transitions of X(t)

are taken to be exponentially distributed with rates de-

pendent on the current fault content of the system, Ex-

pressions are derived for performance measures such as the

distribution of time to a completely debugged system,

distributionof the number of remaining faults, and soft-

ware reliability.

For this model, the hazard function during the interval

between the (i-l)st and the ith failures is given by

- z(ti) = [N - p(i-l)]X.

* Iwhere N is the initial fault content of the system,

D is the probability of imperfect debugging,

and X is the failure rate per fault.
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3.5 Littlewood-Verrall Bayesian Model (Model TBF-6)

Littlewood and Verrall [LIT731 took a different ap-

proach to the development of a model for times between

failures. They argued that software reliability should

not be specified in terms of the number of errors in the

program. Also, they adopted a subjective approach to the

treatment of failures and formulated a Bayesian model.

Specifically, the times between failures are assumed

to follow an exponential distribution but the parameter of

this distribution is treated as a random variable with a

gamma distribution. By taking different forms for one

of the parameters of this gamma distribution, it is claimed

that the failure phenomena in different environments can

be explained by this model.

I1
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4. FAILURE COUNT MODELS

This class of models is concerned with modelling the

number of failures in given testing intervals. As faults

are removed from the system, it is expected that the number

of failures observed per unit time (for any reasonable form

or units of the measure time) will decrease. If this is so,

then the cumulative number of failures versus time curve

will eventually level off. In this setup, the time intervals

may be fixed a priori and the number of failures in each in-

terval is a random variable.

Several models have been suggested to describe this

failure phenomenon. The basic idea behind most of these

models is that of a Poisson distribution whose parameter

takes different forms for different models. It should be

noted that Poisson distribution has been found to be an ex-

cellent model in many fields of application where interest

is in the number of occurrences of some quantity of interest.

One of the earliest models in this category was proposed

by Shooman [SHO72]. Taking a somewhat similar approach,

Tusa [f(MUS7S] later proposed another failure count model based

on execution time. Schneidewind [SCH75] took a different

approach and studied the fault counts over a series of time

intervals. ,oel and Okumoto [GOE79a] introduced a time dependent

failure rate of the underlying Poisson process and developed

4-1
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the necessary analytical details of the models. Several

other models have also been proposed in this class, mostly

as extensions of the corresponding time between failure

models.

A brief description of those models in this category

is given below. Details of selected models are presented

in Appendix D.

4-2
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4.1 Goel-Okumoto Non-Homogeneous Poisson

Process Model (Model FCl)

In this model Goel and Okumoto [GOE79a] basically claimed

that a software system is subject to failures at random times

caused by faults present in the system. Letting N(t) be the

cumulative number of failures observed by time t, they pro-

posed that N(t) can be modelled as a non-homogeneous Poisson

process (NHPP), i.e. as a Poisson process with a time dependent

failure rate. Based on their study of actual failure data from

many systems, they proposed the following form of the model

P{N(t) =y) = (me))y y - 0,1,2,

where

m(t) = a(l - e b t )

also-b
alsoX(t) - m'(t) = abebt

In the above m(t) is the expected number of failures detected

by time t and A(t) is the failure rate. A typical plot of the

X(t) function is shown in Figure 4.1.

In this model a is the expected number of failures to

be observed eventually and b is the fault detection rate per

fault. It should be noted that in this model the number of

faults to be observed is treated as a random variable whose

observed value depends on the test environment. This is a

basic departure from most of the other models which treat

the number of faults to be a fixed unknown constant.

Details of this model are given in Appendix D-1.
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4.1.1 Schneidewind Model (Model FC2)

Using a different approach than described above

Schneidewind (SCH75] studied the number of faults detected

during a time interval and failure counts over a series of

time intervals. He assumed that the failure process is a

non-homogeneous Poisson process with an exponentially de-

caying intensity function

d(i) ct I i ,8 > 0, i 1,2,

44-
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4.2 Goel Modified Non-Homogeneous Poisson
Process Model [Mode1 F 3)

Most of the times between failures and failure count

models assume that a software system exhibits a decreasing

failure rate pattern during testing. In other words, they

assume that software continues continues to be fault free

as testing progresses.

In practice, it has been observed that in many testing

situations, the failure rate (number of failures per unit

time) first increases and then decreases. In order to model

this increasing/decreasing failure rate process, Goel (GOE82}

proposed the following modified version of the NHPP model

(Model FCl).

P{N(t) -y) - (m(t)) Y e-m (t)

where

m(t) - a(l - ebt )

a is expected number of faults to be eventually

detected

b and c are constants that reflect the severity of

testing

The failure rate is given by

X(t) = m'(t) - abc ebtctc-

A typical plot of the X(t) function is shown in Figure

t 14.2. Details of the model are given in Appendix D-2.
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4.3 Musa Execution Time Model (Model FC4)

In this model Musa (MUS7S] makes assumptions that are

similar to those of the model TBF1 of Jelinski and Moranda

except that the process modelled is the number of failures

in specified execution time intervals. The hazard function

for this model is given by

z( = *f(N - nc)

T - execution time utilized in executing the program

up to the present

f - linear execution frequency (average instruction

execution rate divided by the number of instruc-

tions in the program)

* - proportionality constant, which is a fault expo-

sure ratio that relates fault exposure frequency

to the linear execution frequency

nc number of faults corrected during (0,)

IOne of the main features of this model is that it

explicitly emphasizes the dependence of the hazard function

on execution time. Musa also provides a syst natic approach

to converting the model so that it can be applf .ole or

calendar time.

Details of the model are given in Appendix D-3.
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4.4 Shooman Exponential Model (Model FCS)

This model is essentially similar to model TBF1 of

Jelinski and Moranda. For this model the hazard function

[SH072] is of the following form

z(t) = k[ - nc(T)]
T

where

t - operating time of the system measured from

its initial activation

I - total number of instructions in the program

T - debugging time since the start of system

integration

n (r) - total number of faults corrected during T,

normalized with respect to I, and

k - proportionality constant4 IDetails of this model are given in Appendix D-4.
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4.5 Geometric Poisson Model (Model FC6)

Moranda [MOR7Sa] proposed this model to explain the

failure phenomena where failt occurrence data are reported

only periodically and not after each failure. He used the

Poisson distribution as a description of the number of

faults detected in a fixed period of time. The hazard

function during the ith testing interval is given by

z(t) = AK '

where

- average number of faults occuring in the

first interval

K - a constant, 0 < K < 1

Note that this is a discrete version of the NHPP model

of Goel and Okumoto (Model FC3). Details of this model are

described in Appendix D-5.

i
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4.6 Modified Jelinski-Moranda Model (Model FC7)

As the name implies, this model is a modification of

model TBFl [see SUK76]. It was proposed to explain failure

phenomena where more than one fault occurs in a specified

testing interval. The hazard function for the ith testing

interval is given by

z(ti) = ,iN - Mi. 1 1

where

N - total number of faults in the system

Mi_ 1 - total number of faults removed up to the

end of the previous testing interval

.- proportionality constant

Details of this model are given in Appendix D-6.

I 1
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4.7 Modified Geometric De-Eutrophication

Model (Model FC8)

This is a modification [SUK761 of the Geometric De-

Eutrophication model (Model TBFS) of Moranda. The hazard

function during a testing interval is a constant whose

value changes at the beginning of the next testing inter-

val, and is given by

z(ti) = Dk i-I

where

D = fault detection rate during the first

testing interval tI

k = a positive constant less than 1

M i.1 = cumulative number of faults detected up

to the end of the (i-l)st testing interval.

Details of this model are given in Appendix D-7.

I
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4.8 Modified Schick and Wolverton Model (Model FC9)

In this model the faults are assumed to occur inde-

pendently of each other. The fault occurrence rate during a

testing interval is proportional to the number of faults

remaining in the system at the beginning of this interval

and to the total time previously spent in testing (including

an 'averaged' fault search time during the current time).

The expected number of faults occurring during the ith

interval of length ti is then given by

E[N i = [N- - M + ti tT

where

Mi_ 1 is the total number of faults removed up to the

end of the (i-l)st interval,

t. is the ith testing interval
1

Ti I is the cumulative test time through the

(i-l)st interval, and

is a proportionality constant

A detailed description of this model is given in Appendix

D-8.
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4.9 Generalized Poisson Model (Model FC 10)

This is a variation of the NHPP model of Goel and

Okumoto (Model FCI) and assumes a mean value function

m(ti) = - l)t

where

M - total number of faults removed up to

the end of the (i-l)st debugging interval

- constant of proportionality

a - constant used to rescale time ti

Details of this model are given in Appendix D-9.

A1
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4.10 IBM Binomial Model (Model FCII)

In this model Brooks and Motley [BR083] consider the

fault detection process in software testing as a discrete

process. The software system is assumed to be developed and

tested incrementally. This means that some modules of the

system may be available for testing, or in and out of test,

while others are not. The testing phase of the software

system is assumed to consist of a number of test occa-

sions and each test occasion is further assumed to consist

of unit intervals of testing. Thus, testing effort (i.e. total

number of unit intervals) in each test occasion could be dif-

ferent. This model also assumes that faults could be intro-

duced into the software during the fault removal process.

This model can be applied at the module level or at

the system level. If the model is applied at the module level,

then the observed process is the fault occurence process of

each test occasion of the module under test. According to

this model the number of faults detected during the ith test

occasion in Budule j, n.j, follows a binomial distribution with

parameters Nij and qij, that is

(Ni- X. N ij xi

P~nij =x1} N.. x J(1  qij . J

where, Nij = expected number of faults remaining in module

j at the beginning of the ith test occasion
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nij = number of faults detected in module j

during the ith test occasion

qij = fault detection probability for the ith test

occasion from module j.

If the model is applied at the system level, then the ob-

served process is the fault occurrence process of each test

occasion of the software system. In that case, the number

of faults detected during the ith test occasion of the soft-

ware system follows a binomial distribution with parameters

Ni and qi, that is

i x. N i-xi
P{n. =xi} = ( i) qi 1 1 1

where, N. = expected number of faults remaining at the be-

ginning of the ith test occasion.

ni - number of faults detected during the ith test occa-

sion.

qi - fault detection probability for the ith test

occasion.

Note that N~i a [ N..

where, Ji is the set of modules tested on occasion i.

Details of this model are given in Appendix D-10.
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4.11 IBM Poisson Model (Model FClZ)

The assumptions of this model are similar to those of

model FC11 except that the number of faults found during

a test occasion is assumed to follow a Poisson distribu-

tion.

This model also can be applied at the module or

the system level. If the model is applied at the module

level, then the observed process is the fault occurrence pro-

cess of each test occasion of the module under test. According

to this model the number of faults detected during the ith

test occasion in module j follows a Poisson distribution with

parameter Nijoij, that is.

P{ni. =x. 1 x 1 '-

where, Nij = expected number of remaining faults in module j

at the beginning of test occasion i.

n.. - number of faults detected in module j during

test occasion i1ij - the proportionality factor between remaining

faults and fault detection rate.

N.i*0* = expected number of faults detected in module j

during test occasion i.

If the model is applied at the system level, then the observed

process is the fault occurrence process of each test occasion

of the software system. Then, in that case, the number
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of faults detected during the ith test occasion follows

a Poisson distribution with parameter N ii
, that is

P~ni xi aeNi0i ( ix i

P {n i  l xi I

where, Ni = expected number of remaining faults at the

beginning of the ith test occasion.

n. = number of faults detected during the ith testi 1

occasion.

i the proportionality factor between remaining

faults and fault detection rate.

Nii - expected number of faults detected in the system

during test occasion i.

Note that N JJi Nij

where Ji is the set of modules tested on occasion i.

Details of this model are given in Appendix D-11.

4
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S. COMBINATORIAL MODELS (FS AND IDB MODELS)

In this section we give a brief description of time-

independent models that have been proposed for assessing

software reliability. As mentioned earlier, the two ap-

proaches proposed for this class of models are fault seeding

and input domain analysis.

In fault seeding models a known number of faults is

seeded (planted) in the program. After testing, the numbers

of exposed seeded and indigenous faults are counted. Using

combinatorics and maximum likelihood estimation, one can then

estimate the number of indigenous faults in the program or

the reliability of the software.

The basic approach in the input domain based models is

to generate a set of test cases from an input (operational)

distribution. Because of the difficulty in estimating the

input distribution, the various models in this group parti-

tion the input domain into a set of equivalence classes. An

equivalence class is usually associated with a program path.

The reliability measure is calculated from the observed

failures after execution (symbolic or physical) of the sampled

test cases.

The fault seeding model is discussed in Section S.1.

Input domain based models are described in Section 5.2. More

details about these models are given in Appendix E.
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S.1 Mills Seeding Model (FS1)

A number of models have been proposed but the most

popular (and most basic) is Mills' Hypergeometric model

[MIL72]. This model requires that a number of known faults

be randomly inserted (seeded) in the program to be tested.

The program is then tested for some amount of time. The

number of original indigenous faults can be estimated

from the numbers of indigenous and seeded faults uncovered

during the test by using the hypergeometric distribution.

The procedure adopted in this model is similar to

the one used for estimating population of fish in a pond

or for estimating wildlife. These models are also referred

to as tagging models since a given fault is tagged as seeded

or indigenous.

The relevant formulae are given in Appendix E.I.

Lipow (LIP721modified this problem by taking into con-

sideration the probability, q, of finding a fault (of either

kind) in any test of the software. Then, for N statistically

independent tests the probability of finding xI indigenous

faults and x seeded faults can be calculated as shown insI
Appendix E-1.

Basin [BAS74] suggested a two stage procedure with the

use of two programmers. Estimates of the number of indigenous

q I faults using this procedure can be obtained as shown in

Appendix E-1.
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5.2 Input Domain Based Models (IDB Models)

Representative models in this class are those proposed

by Nelson [NEL78,BRO75], Ho [H078] and Ramamoorthy and

Bastani [RAM82].

5.2.1 Nelson Model (IDBl Model)

The reliability of the software is measured by exDosing

(running) the software with a sample of n inputs. The n

inputs are randomly chosen from the input domain set E =

(Ei i = 1,N) where each E. is the set of data values needed

to make a run. The random sampling of n inputs is done

according to a probability distribution Pi; the set (Pi: i= 1,N)

is the "operational profile" or simply user input distribu-

tion. If ne is the number of inputs that resulted in execu-

tion failures, than an unbiased estimate of software

reliability Ris 1- (ne/h). However, it may be the case that

the test set used during the verification phase may not be

representative of the expected operational usage. Brown and

Lipow [BR075] suggested an alternative formula for R which is

N f.

i=l n J

where

n. number of runs sampled from input subdomain E.J J

f. number of failures observed out of n. runs.
J I

The main difference between Nelson's A and Brown and Lipow's

is that the former explicitly incorporates the usage dis-

tribution or the test case distribution while the latter
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implicitly assumes that the accomplished testing is

representative of the expected usage distribution. Both

models assume prior knowledge of the operational usage

distribution.

i5-
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5.2.2 Ho Model (IDB2 Model)

Reliability estimation in this model proceeds by first

generating the symbolic execution tree of the program. This

tree characterizes all the execution paths and their associ-

ated outputs in the program. The nodes represent statements

while the edges represent the state vector resulting from

symbolic execution along the path from the root statement

to the current statement. A procedure for generating the

symbolic execution tree [HO78] is given below:

I, The first statement is the root of the tree.

II. If a leaf is not a STOP or RETURN statement,

symbolically execute the statement corresponding

to the node. If the current statement is a con-

ditional statement, the feasibility of the

branches is examined. New nodes are created

for statements which are successors of the

current statement. Edges, labelled with state

vectors, are joined between the current node and

the new node(s).

III. Go to II.

V. The generated execution paths from the symbolic execu-

tion tree are proven correct or are sample tested. For a

given path, say path i, if it is proven correct, then the

path reliability R. = 1. If path i cannot be proven correct,

* a random sample of N test cases is generated that will exe-

cute path i. If no failures result from the execution of the

N test cases, then Ri is hounded below by 1- C. where C.
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is the confidence interval of path i. The length of C. is1

a function of our given confidence coefficient a. On the

other hand, if n failures are observed and the errors not

corrected, then R. is bounded below by -n - C.. If the

observed n failures are corrected, then the sample testing

is repeated for path i.
A

Finally, the software reliability estimate R is

obtained as
m

fiRii=l

where:

f. - weighting factor of path i which corresponds

to the execution frequency of path i.

m total number of execution paths.

One difficulty with applying this approach is the

large number of paths that may exist in any large size software.
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5.2.3 Ramamoorthy and Bastani Model (Model IDB3)

This input domain based model estimates the relia-

bility R from the relation

e r

where

V e - the total fault size remaining in the program.
r

Ve can be determined by testing the program and locating and
r

estimating the size of faults found. A fault has a large

size if it is easily detected (i.e., if it affects many in-

put elements). A fault has a small size if it is relatively

difficult to detect. The size of a fault depends on the way

test inputs are selected. Good test case selection strate-

gies like path testing, boundary value analysis, magnify

the size of a fault since they exercise error-prone constructs.

The observed fault size is lower if random testing is em-

ployed. Although the model does not assume random testing

(in fact, any test strategy can be employed), it offers no

easy or systematic way to estimate
e r
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6. ASSUMPTIONS, LIMITATIONS AND

APPLICABILITY OF MODELS

In this section we discuss the appropriateness or other-

wise of the various assumptions underlying the models of

Sections 3 through S as well as their applicability during

software development phases. Details of the assumptions have

been brought out in Appendices C, D, and E along with the

details of the models. Not all the assumptions discussed

here are relevant to any given model but as a totality, they

give a picture of the kind of limitations imposed on the

use of software reliability models. The purpose of the

following discussion is to focus attention on the framework

within which the existing models have been developed.

It should be pointed out that the arguments presented

here regarding the assumptions or the applicability of the

models may not be universally acceptable. This is so because

the software development process is very environment dependent.

What holds true in one environment may not be true in another.

Because of this, assumptions that are reasonable, e.g. during

the testing of one function or system may not hold true in

even a subsequent test phase of the same function or system.

The ultimate decision about the appropriateness of the under-

lying assumptions and the applicability of the models will

have to be made by the user of a model. What is presented

6-1
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here should be helpful in determining whether the assump-

tions underlying a given model are representative of his

testing environment and in deciding which model, if any,

to use.

The assumptions are discussed one at a time in Section

6.1 along with a list of the models which use the assumption

being discussed. Software development phases and the appli-

cability of models in each phase are covered in Section 6.2.

p•I

.I I

6:2

No=



6.1 Assumptions and limitations

6.1.1 Independent Times Between Failures

This assumption requires that the times between

successive failures be independent of each other. In

general, this would be the case if successive test cases

were independent, i.e., were chosen randomly. However,

testing, especially functional testing, is not based on

independent test cases, t.e., the test process in general

is not a random process. The time (or the additional

number of test cases) to the next failure may very well

depend on the niture or time cf the previous fault. If

a critical fault is uncovered, the tester may decide to

intensify the testing process and look for more potential

critical faults. This in turn may mean shorter time to

the next failure.

This assumption is used in models TBF1, TBF2,

TBF3, TBF4, TBFS and TBF6.
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6.1.2 A Detected Fault Is Immediately Corrected

The models that require this assumption assume

that the software system goes through a purification process

as testing uncovers faults which are immediately removed.

An argument can be made that this assumption is implicitly

satisfied in most testing environments. When a fault is

detected, the testing process in general, but not always,

can proceed without removing the fault. The future failure

process can then be assumed to be based on the assumption

that the fault was in fact removed after its occurrence.

If, however, the fault is in the path that must be

tested further, this assumption would be satisfied only

if the fault is removed prior to proceeding with the re-

mainder of the test bucket or the test cases are generated

to get around it.

This assumption is used in models TBFI, TBF2, TBF3,

TBF4, TBF6.

6-4
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6.1.3 No New Faults are Introduced during

the Fault Removal Process

The purpose of this assumption is to ensure that the

modelled failure process does have a monotonic pattern.

That is, the subsequent faults are exposed from a system

that has less faults than before. In general, this may

not be true if the correction process follows the occurrence

of every failure, because during the correction process,

other paths may have been affected leading to additional

faults in the system. It is generally considered to be a

restrictive assumption in reliability models. The only way

to satisfy this is to ensure that the correction process

does not introduce new faults.

This assumption is used in all reliability models.

* 6
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6.1.4 Failure Rate is Proportional to the

Number of Remaining Faults

This assumption is the same as saying that each

remaining fault has the same chance of being detected in

a given testing interval between failures. This assump-

tion is a reasonable one if the test cases are chosen to

ensure equal probability of executing all portions of the

code. However, if one portion (or a set of paths) is

executed more thoroughly than another, the faults in the

former are more likely to be detected than in the latter.

Faults residing in the unreachable (or never tested) portion

of the code will obviously have a low, or zero, probability

of being detected.

This assumption is used in models TBF1, TBF2, and TBF4.
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6.1.5 Failure Rate Decreases with Test Time

This assumption implies that the software gets better

with testing. This seems to be a reasonable assumption and

can be justified as follows. As testing proceeds, faults

are detected. They are either removed before testing con-

tinues or they are not removed and the test coverage is

narrowed in subsequent tests. In the former case the sub-

sequent failure rate decreases explicitly. In the latter

case, the failure rate (based upon the entire program) de-

creases implicitly as smaller and smaller portions of the

code are subjected to testing.

This assumption is used in models FCl, FC3, FC4, and

FC5.

, 7
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6.1.6 Increasing Failure Rate Between Failures

This assumption implies that the likelihood of finding

a fault increases as the testing time increases within a

given failure interval. This would be a justifiable assump-

tion if software were assumed to be subject to wearout with-

in the interval. But this is not generally the case with

software systems. Another situation where such an assump-

tion might be justifiable is where testing intensity increases

within the interval in the same fasion as does the failure

rate.

This assumption is used in models TBF2, TBF3, and FCI0.

I
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6.1.7 Testing is Representative of the Operational Usage

The test cases are generally chosen to ensure that the

functional requirements of the system are correctly met. A

given user of the system, however, may not use the functions

in the same proportion. Testing, then, will not reflect the

operational usage. However, information about the usage

profile is not easy to obtain and this assumption would be

the logical one to use. If the required information is

available, testing effort can be modified to be representa-

tive of the use profile.

This assumption is necessary when reliability estimate

based on testing is projected into the operational phase.

It is used primarily in models IDBI, IDB2, and IDB3. Most

TBF and FC models would also need this assumption if they

are being used to assess operational reliability.

.If
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6.1.8 Reliability is a Function of the Number of

Remaining Faults

This assumption implies that all remaining faults

are equally likely to appear during the operational usage

of the system. If the usage is uniform, then this is a

reasonable assumption. If, however, some portions are more

likely to be executed than others, the reliability of the

system can be recomputed by incorporating this information.

In other words, a reliability measure conditioned on usage

rather than an unconditional measure would be more desirable.

If, however, such information is not available, then the

assumption of uniform usage is the only reliable one.

This assumption is made when reliability estimates from

any model are based on the number of remaining faults.
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6.1.9 Use of Time as a Basis for Failure Rate

Most models use time as a basis for determining

changes in failure rate. This usage assumes that testing

effort is proportional to either calendar time or execu-

tion time. Also, time is generally easy to measure and

most testing records are kept in terms of time. Another

argument in favor of this measure is that time tends to

smooth out differences in test effort.

If testing is really not proportional to time, the

models are equally valid for any other relevant measure.

Some examples of such measures are lines of code tested,

number of functions tested, and number of test cases exe-

cuted.

j6-ik
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6.2 Applicability of Existing Software
Reliability Models

Due to the various assumptions that are required by the

models described earlier (see Table 6.1), it is necessary to

use caution in choosing a model for software reliability

assessment. In this subsection we develop a classification

scheme and suggest the classes of models that might be appli-

cable in various phases of the software development process.

For this purpose we consider the following phases of

the software development process.

1. Design

2. Unit Testing/Debugging

3. Integration Testing/Debugging

4. Acceptance Testing/Debugging

S. Operational Testing

6.2.1 Design phase

During the design phase, faults (i.e. desi~n faults)

may be corrected visually or by other formal/informal pro-

cedures. Existing software reliability models are not

applicable at this stage because

(i) test cases needed to expose faults as required

by fault seeding and input domain based models

do not exist,

6-12
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Table 6.1

List of Key Assumptions by Model Category

1. TBF Models

* Independent times between failures

* Equal probability of the exposure of each fault

Embedded faults are independent of each other

Immediate fault removal, perfect fault removal,
no new faults introduced during correction.

2. FC Models

Testing intervals are independent of each other

Testing during intervals is reasonably homogeneous

Numbers of faults detected during non-overlapping
intervals are inderendent of each other

3. FS Models

Indigeneous and seeded faults have equal proba-
bilities of being detected.

4. IDB Models

Input profile distribution is known

Random testing is used

. Input domain can be partitioned into equivalent
classes.
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(ii) failure history required by time dependent

models is not available.

6.2.2 Unit testing

The typical environment during the module coding and

unit testing phase is such that:

(i) test cases generated from the module's input

domain may not form a representative sample of

the operational "profile" distribution,

(ii) times between exposures of module faults are not

random since the test strategy employed may not

be random testing. Also, test cases are usually

executed in a deterministic fashion,

(iii) exposed faults are corrected (debugged).

Given these conditions, it seems that the fault seeding

models are applicable provided it can be assumed that the

indigenous and seeded errors have equal probabilities of

being detected. However, a difficulty arises because the

programmer is also the tester in this phase. The input

domain based models seem to be applicable, except that

matching the test profile distribution with the operational

. profile distribution is non-trivial. Due to these difficul-

ties, such models, though applicable, may not be usable.

The time dependent models (TBF models) do not

seem to be applicable in this environment since the indepen-

dent times between failures assumption is seriously violated.

_A 6-14
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6.2.3 Integration testing

A typical environment during integration testing is:

(i) modules are integrated into partial or whole

systems and test cases are generated to verify

the correctness of the integrated system,

(ii) test cases may be generated randomly following

an input distribution or may be generated deter-

ministically using a reliable test strategy, the

latter being probably more effective,

(iii) exposed faults are corrected and there is a strong

possibility that the removal of exposed faults

may introduce new faults.

Fault seeding models are still theoretically applicable

since we still have the luxury of seeding faults into the

system. Input domain based models based on an explicit test

profile distribution are also applicable. Again, the diffi-

culty in applying them at this point is the large number of

logic paths generated by the whole system.

If deterministic testing (i.e., boundary value analysis,

path testing, etc.) is used, times between failures (TBF)

models may not be appropriate because of the violation of

the independence of inter-failure times assumption. Deter-

ministic testing increases the likelihood of exposing faults

and, hence, inter-failure tines are no longer random. Failure

count models (ex. FC1, FC2) may be applicable if sets of

test cases are independent of each other, even if the tests

6-15
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within a set are run deterministically. This is so because

in FCl and FC2 models the system failure rate is assumed

to decrease as a result of executing a set of test cases and

not at every failure.

If random testing is done according to an assumed input

profile distribution, then most of the existing software

reliability models are applicable. Input domain based models,

if used, should utilize a test profile distribution which is

statistically equivalent to the operational profile distri-

bution. Fault seeding models are applicable likewise, since

faults can be seeded and the equal orobability of fault

detection assumption may not be seriously violated. This is

due to the random nature of the test generation process.

Times between failures and failure count models are most

applicable in this environment with random testing. The

only question in applying these models is which specific model

to use. Some people prefer to try a couple of these models

for the same failure history and then choose an appropriateione. However, because of the different underlying assump-

tions of these models, there is still a subtle distinction

as to when a snecific model is most apnlicable. For example.

for operating systems or real-time systems which are run

almost continuously, the time-dependence assumption, say of

the Non-homogeneous Poisson Process Model (FCI), or model

FC2, are most applicable. We should, however, be aware

of the fact that in most real-time systems the inputs to
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the software may not be random.

If there is reason to believe that the operaticnal

input to the software is essentially uniform, then each

embedded fault in the software has essentially an equal

chance of being detected. Thus, times between failures

models based on a constant multiple of the number of re-

maining faults, (e.g. Nodel TBF1 of Jelinski and 'oranda)

are more anplicable. In real-world situations, the equal

chance of fault detection assumption is rarely true. This

is due to two main reasons:

(i) embedded faults in the software have unequal

sized, some are large while others are small,

(ii) the input distribution may noc be uniform.

If such is the case, models which assume that error

occurrence rate varies with time (e.g. Model FC1) are wore

applicable:

In an environment where exposed errors are imoerfcctly

debugged, a theoretically more applicable model is the

Imperfect Debugging Model (Model TBF6).

In environments where imperfect debugging is assumed

and additional errors are introduced during the error correc-

tion process, none of the existing software reliability

models is apDlicable. Models of this kind are yet to be

developed.
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6.2.4 Acceptance testing

During acceptance testing the software is given to

"friendly users". These users generate inputs (usually

random following an input distribution) to verify the cor-

rectness of the software. The main differences between this

environment and that of the integration testing environment

are the following:

(i) exposed faults are immediately corrected since

the user may not know how to correct them,

(ii) the user does not have the luxury of seeding

faults in the program,

(iii) the user may not even know the structural paths

of the program.

It can be easily seen that the fault-seeding models are not

applicable because of (ii) above. Times between failures

models are also not applicable since these models assume

correction of exposed errors before testing proceeds.

7; 6.2.5 Operational phase

When the reliability of the software as perceived by

the developer or the "friendly users" is already acceptable,

the software is released for operational use. During the

operational phase, the user inputs may not be random. This

is because the user may use the same software function or

path on a routine (production) basis. Inputs may also be
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correlated (like in real-time systems), thus losing their

randomness. Furthermore, faults are not always immediately

corrected.

Software that is in operational use may be recalled

by the developer so that errors exposed during the opera-

tional phase can be corrected. The usual practice is to

release a newer version of the software which hopefully

contains none of the exposed faults.

It anpears that the failure count models could be

used in this phase if the input process can be considered

to be random over longer intervals of time.

6I1
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7. STEP BY STEP PROCEDURE FOR SOFTWARE

RELIABILITY MOPELING AND ILLUSTRATIVE

EXAMPLES

The purpose of this section is to describe a systematic

procedure for developing a software reliability model from

available failure data. The general procedure is de-

scribed in Section 7.1 and illustrated via analyses of

some failure data in Section 7.2. An important phase in

the development of a model is the estimation of parameters,

mostly done iteratively. Details of such calculations for

the data set of Section 7.2 are given in Section 7.3.

Estimation of parameters is further illustrated for a

simple data set in Section 7.4 using the De-Eutrophication

model of Jelinski and Moranda (Model TBF1) and the NHPP

model of Goel and Okumoto (model PC1).
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7.1 Step by Step Procedure for MIodeling

The step by step procedure is shown in Figure 7.1

and described below.

Step 1; Study the failure data

Most of the models discussed in this report require the

prior existence of some failure data to fit a model. The

first step in developing a model is to study this data in

order to gain an insight into the nature of the process

being modelled. If, for example, the number of failures per

unit time is increasing, it would appear that more and more

functions are being added during the subsystem or system

test. The data may have to be normalized before proceeding

any further because most of the models assume a basically

steady system. It may be that the test case severity is

increasing. Again, this needs to be accounted for in the

modelling process.

Step 2: Choose a Reliability Model

The next step is to choose an appropriate model based

upon an understanding of the testing process and the assump-

tions of the various models discussed earlier. The data in

Step 1 can also be used to sharpen decisions about the applica-

bility of a class of models or of the choice of a given model.

Step 3: Obtain Estimates of Parameters of the Model

* IDifferent methods are generally required depending

1 upon the type of available data. The most commonly used
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ones are the least squares and maximum likelihood

methods.

Step 4: Obtain the fitted model.

The fitted model is obtained by substituting the

estimated values of the parameters in the chosen model.

At this stage, we have a fitted model based on the

available failure data.

Step 5: Perform goodness-of-fit test.

Before nroceeding further, it is advisable to conduct

the Kolmogorov-Smirnov goodness-of-fit test or some other

suitable test to check the model fit.

If the model fits, we can move ahead. However, if

. the model does not fit, we have to collect additional

data or seek a better, more appronriate model. There is no

easy answer to either how much data to collect or how to

look for a better model. Decisions on these issues are

very much problem dependent.

Step 6: Compute confidence regions.

It is generally desirable to obtain 80%, 90%, 95% and

99% joint confidence regions for the parameters of the model

to assess the uncertainty associated with their estimation.

This information is helpful in the interpretation of model

outputs.

7-
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Step 7: Obtain performance measures.

At this stage we can compute various quantitative

measures to assess the performance of the software system.

Some useful measures are shown in Figure 7,1. Confidence

bounds can also be obtained for these measures to evaluate

the degree of uncertainty in the computed values.

Step 8: Decision making.

The ultimate objective of developing a model is to

use it for making some decisions about the software system,

e.g., whether to release the system or continue testing.

Such decisions are made in this step of the modell.,

process based on the information developed in the previous

steps.

7-5

t -

2t:

.ip



7-2 An Example of Software Reliability M1odelling

In this section we employ the above step-by-step

procedure to illustrate the development of a software

reliability model based on actual failure data from a

real-time command and control system. For the purposes of

this illustration, we employ the NHPP model of Goel and

Okumoto (:lodel FCi).

The delivered number of object instructions for

the system being modeled was 21,700 and the system was

developed by Bell Laboratories [V!USSO].

Step 1:

The original data was given as times between failures.

To overcome the independence assumption, we summari:ed

the data into numbers of failures ner hour of execution

time. The data are shown in Table 7.1 and rlotted in Fig. 7.2.

A plot of N(t), the cumulative number of failures is shown in

SF 7.3 with other quantities to be discussed later.

A study of the plot indicates that the failure ratet' (number of failures per hour) is, in fact, decreasing and

hence Nl1DP (.lodel FC1) can be employed to model the failure

process.

Step 2.

Using the method of maximum likelihood (See Appendix

D-l), estimates of the psirameter" a and b were obtained

and are

7-6
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Table 7-1

FAILURES IN ONE HOUR (EXECUTION TIME)

INTERVALS AND CUMULATIVE FAILURES

sysi

Hour No. Cum.

1 27 27
2 16 43
3 11 54
4 10 64
5 11 75
6 7 8
7 2 84
a 5 89
9 3 92

10 1 93
11 4 97
12 7 104
13 2 106
14 5 Iil
15 5 116
16 6 122
17 0 122
18 5 127
19 1 128
20 1 129
21 2 131
22 1 132
23 2 134
24 1 135
25 1 136
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a = 142.32 (Expected number of faults)

= 0.1246 (Faults per fault per hour)

For details of these computations, see Section 7.3.

Step 3

The model based on the data of Table 7.1 is

i(t) = 142.32(.1 - e- 0 1246t )

and

A(t) = 17.73 .e70. 246 t

A plot of mr(t) versus t is shown in Figure 7.3

Step 4.

We used the Kolmogorov-Smirnov goodness of fit test

for checking the adequacy of the model, For details of

this test see Goel JGOE82]. Details of the test for this

data set are shown in Table 7.2. We note that on the basis

of this test the model seems to indicate a good fit.

Step S.

The confidence regions for a and b were computed but

are not shown here.

Step 6.

Wre computed three Derformance measures: the cumula-

J tive number of failures, the expected number of remaining

faults and software reliability. These measures are plotted

in Figures 7.3, 7.4, and 7,5, respectively.

Plots of the confidence bounds for the expected number

of failures, expected number of remaining faults and relia-

bility are also shown in the above figures.

7-10
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Table 7.2

Kolmogorov-Smirnoff Test for Data Set of Table 7.1

tI  H(ti)  G o(tI) lGo(t i) - H(ti)j IGo(t i) - H(ti-Il

1 .198 .123 .076 .123

2 .316 .231 .085 .032

3 .397 .326 .071 .010

4 .470 .410 .060 .014

5 .551 .485 .066 .014

6 .602 .551 .051 .000

7 .617 .609 .008 .006

8 .654 .660 .006 .043

9 .676 .705 .029 .0s'

10 .683 .745 .061 .068

11 .713 .780 .067 .096

12 .764 .811 .047 .098

13 .779 .839 .059 .074

14 .816 .863 .047 .084

15 .852 .885 .032 .068

16 .897 .903 .006 .050

17 .897 .920 .023 .023

18 .933 .935 .001 .038

19 .941 ,948 .007 .014

20 .948 .959 .011 .018

21 .963 .969 .006 .021

22 .970 .978 .008 .015
23 .985 .986 .001 .016

24 .992 .993 .001 .008

25 1 1 0 .007

0 25 , .20 .208 > Dmx 0. 123}m Hence the model fits the data

25 .05 .264> D - 0.123
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study of these plots indicates that the NHPP

model (Model FC1) provides an excellent fit to the data

and can be used for purposes of describing the ,failure

behavior as well as prediction of future failure process.

The information available from this can be used for planning,

scheduling, and other management decisions.

SteD 8

: A plot of the reliability growth is shown in Figure

7.6. To obtain this plot, we recomputed the parameters a

and b at one hour intervals based on data from 15, 16, .,i, 25

hours of execution time testing. The one hour ahead pre-

dicted reliability at each of these points is what is shown

in Figure 7.6.

4
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7.3 Details of Parameter Estimation for the

Data of Section 7.2.

The data in Section 7.2 can be written as follows,

Times Cumulative # of Failures
ti x 3600 secs) (yi= 1,2, ... ,25)

1 27
2 43
3 54
4 64

24 135
25 136

Estimation of Parameters a and b

14LE of a and b can be obtained by solving the following

pair of equations

a(l - e - )t = n -bt.- t i

ate-bt n n (Y.i- Yi-1)(ti e ~t i 1e)
ane n1 -bt.i- e-by.

The above two equations yield

Yn e- b tn n ( - i, te- bt.i - -bt i-l

-b n-bt i-l -bt.i

MLE of b can be obtained from this using Newton-Raphson method.

Then we have

(-e n)
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Use of the Newton-Raphson method to find b

Let n ( - -bt. -bt.i1 e-btn
_,.y. )(tie -t..e ) yte

1 i-in
i= -i -bt1  -

e i- e 1-e n

thn-bt. -b t. 2 bt. 2 bti)-

dFEn (yi-yi) -e 1)(t 1 1 e - t e
i=1 _1(e -e 1

1-12 2

bn 2

*For the above data set

n = 25, to =0, t.i = i for i= 1,2, .. ,25

Yo 0, y1  27, y2 = 43, . . . Y24 135, y25 =136.

* Iteration 1

Let initial b = b~)= 0.01 then

25 (y.-v_ 1)(t e -. l'-t 1 e- Ol )- y2 5 t2 5 e-'
2 5

F. .Ol -

=12665.11333 - 136 x 2e.2

(1 - e -

= 1266S.11333 - 11970.75966 -694.35367

-.Olt ile- Olt~ i 2 e*Ot- - .-*Olt

dF .25 (yi-yi_1 ) (e-e)t 1  te)

-te.t- t~ e-. Olti- 2 - .01t2 S

-.l -I - 1 2 Ot+y 2 5t25eOl

(e :i* 1 e ) (1-e 25)

z-1359988.667 + 1352938.747

- -7049.920
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- F F -694.3S367 - (-7049.920)

-0.0984910087 > 0.0001 =>Go to Iteratjton 2

Iteration 2

b()-b= + 4b (1) =.01 + 0,0984910087

= 1084910087 =.108

25 (y.-y._)(tie -.0 t. - e- 0 i, 13x 25e* .108x25
F= -. 08 -,0 t " l____ ___

e.0t 1- - e q1t 1 - 0x2

=319.7894262 -241,76042S8 = 78.029000

-. 108t. -108t.i - .108t. i - 108t.

dF 25 (y-y ee )(ti 1 e ite

- e- . 108t.i i- e 108t~ i1 2 +16x2 - .108x25

.18 - .1081c252

(e -e ) 2(

=-11543.18018 + 6473.77611

=-S069.40407

6b (2 - -F dF = -78.0290004 +(-5069.40407)

=.0153921446 > .0001=

Itertion=>Go to Iteration 3

b1 (3 ) - b (2 ) + Ab(2 = .1084910087 + .0153921446

= .1238831533 .124

25 (y-yi, (tie -. 124t.i i- -. 124t iI 13 25e -. 124x25

i1I -. 124t i. -, 124t. ( - 124x25

164.2123219 -160.8842808 =3.3280411
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.124t i.l .124t i  2-. 124ti. I t2 "124t i

25 (yi-yi-i) (e 1 1 e )(t e1 -t e )dF 1
-(tie 124t -tIe 124t 1 2  136 x 2S 2 xe - 124x25

-( "4tiI - lZ4ti) 2  i- ''IZ4x25 2
(e i1 -e 12(-

= -8850.321535 + 4212.428725

= -4637.892810

,b - 3 ) -  -F dF = -3.3280411 + (-4637.892810)

a 7.175761232x 10- > 0.0001 =>Go to Iteration 4

Iteration 4

b ( 4 ) = b ( 3 ) + Ab (3) .1238831533 + .0007175761232

= .1246007294 .125

- .125t. - . 125t.

F 25 iy (tie -ti~te 1 136 x 25 x e 125x25
t- .125tt -. 1'5t i  -15xO5

157.8981635 - 157.8910124 = 0.0071511
1lt - .125ti

2SdF 25 (yi-yi 1 ) - 125t i -e - I(t i 125t -t2e1

i~ - (t -.125t i  -.125t , 2.12x25

tie 1 t-le 1 136 x 25" x e '
.125ti '.25ti (1 - e -125x25

(e -e

= -8748.547027 + 4130.580986

= -4617.966041

() dF = -.0071511 * (-46.7.966041)

= 1.5485388 x 10 6 < 0.0001

b = ( 4 ) + Ab( 4 ) . .1246007294 + .0000015485

= .1246022779 = .1246

b) Y25 156 - 136 142.3156405
a a -- __________b , -. 1246x25

( -ebt2 5 ( x-e-x2 5 ) (1 e
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7.4 Numerical Examples

Once a model has been identified, the key step in

fitting the model to the observed failure data is the esti-

mation of parameters. This requires detailed computations

because in almost all cases the likelihood equations have

to be solved iteratively using numerical techniques.

In this section we show the details of such compu-

tations for selected data sets. Two types of data are

considered viz, times between failures and failure counts.

Computations for some performance measures are also given.

The two models considered are the Jelinski-Moranda

De-eutrophication Model. (Model TBFI) and the Coel-Okumoto

NHPP model (Model FCl).

The data set consists of only a few points so that

Ii the computations could be repeated using a hand calculator.

It should be pointed out that the leading decimal places

have been retained in these examples to ensure that the

round-off errors do not build up.
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7.4.1 Example showing computations for the Jelinski-Moranda

Model (Model TBF1)

Consider a set of failure times as follows:

Failure no. Time Between Failures t

1 3

2 30

3 113

4 31

5 115

The parameters to be estimated are N and

The maximum likelihood estimate of N can be obtained from

the following equation using Newton-Raphson method:

1 n
- N n n 1 ) i )

E t.il

i - 1

We can then find $ from the following equation by substituting

N for N

.= n
n n

fi=l i=l 2.

It

Use of Newton-Raphson method to find N

Let S 1 n
F = 1--) - n

i~1 N n-1-i.1tn

i"lt i=l[t i

then

dF- n n
n " " - I

{N 1 1 (i-1) t i 2 
-ill

t 1
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n 5
For the above dataset n = 5, t. = ti~l I i=1

- (3 + 30 + 113 + 31 + 115) 292; and

n 5
[ (i-l)t. = (i-l)ti = t2 + 2t3 + 3t 4 + 4t5i=l i=1l t + t

= 30 + 226 + 93 + 460= 809

Iteration 1: Let an initial value of N be N = 5
5Then F ( ) = 1 5

5 + 1 - 1 *(09Si=l(809)

- +_i + + 1)5

= 2.283333333 - 2.242703532

= 4.062980 x 10- 2
I and

a d dF (I) 5 5 1
-1) _is_ 1 1

dN{5 1 (809)}? i=l {5-i +

{2.229452055}2

dF (1)
or d = -4.57667284 X 10

Next

(1 dF (1) 2
AN = - F 1  " = (4.062980x10 2 ) (4.57667284x 10 1 )

= 0.08877584602

-4 C1)% -46
Let error E<10 -4  Since AN 10, we go through the next

iteration.
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Iteration 2. The value of N for the second iteration is

N( 2 ) = N(1) + AN(1) = 5.08877584602

F 2 1 580
il 5. 08877584602-+1- 5.08877584602 

or F (2 ) = 5.22788908141 x 10- 3

and

d F ( 2 ) 5 2 - 5 1 1 1 2

dN {5.08877584602 - 8 2 i1 {5.08877584602-i+dN (2 5.08877584602602i+

.9303743904 - 1.276022534 = -3.45648143667 x10
- I

Now

A _-F dN( 2 ) (5.22788908141x0- 3 ) (3.45648143667x 101)

= 0.0151248869

Since this number is >10 - 4 , we go to the next iteration.

Iteration 3. Value of N for the third iteration is

N ( 3 ) = 11(2) + AN(2) = 5.08877584602+0.0151248869

= 5.10390073293

F (3) 5 1 5
= 5. 10390073293 -i+ 5 7 - 809

i= " 5.10390073293- M-I

and 2.142960589 
- 2.142839277 

= 1.21312176929 
x 10

- 4

dF (3) 5 5 1
ffi {5.10390073293 - M}" ii1{5.10390073293-i +1} 2

.9183520332 - 1.248093532 = -3.29741499203 x 10-1

AN13 )  F (3 ) " ( M (1.21312176929 x 10-- 4F" (3.29741499203 x 101)

- 3.679008472 x 10 - 4
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Since AN >10 - , we continue the computations

Iteration 4. The value of N for the iteration

N ( 4 ) = N (3 ) + AN( 3 ) = 5.10390073293 + 3.679008472x 10
- 4

= 5.10426863377

1(4) 5
F 5. 10426863377- 7 +1 - 809i=l 5. 10426863377 2-9

- 2.142501537 - 2.142501468 = 6.93541917229x 10 8

dF (4) 5 1T4 {5 a02837 z 77Y
{5.10426863377 - i=l {5.10426863377- i+ 112

- 0.9180625077 - 1.247427058 = -3.29364549966x 10-
1

and

AN  F (4 ) - = (6 .9354191722 x 108 (.3.29364549966 x 10)
dN = 2. 105696916 x 10- 7

Since AN (4 ) <10 - 4 we terminate further iterations and compute

N as

N = (4 ) + AN (4 )

5.10426863377 + 2.105696916 x0 - 7

A

or N = 5.104268844
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using the above value of N, we cet

^4 5
= 5.104268844 (292) -809

5 = 5/681.446502

1490.446502 - 809

or € = 7.337333131x 10
3

For this data set, we get

N= 5.104268844

= 7.337333131 x 
10- 3

Performance Measures

After estimating the parameters N and € , we calculate

the performance measures using these estimates as follows:

eReliability at time t after nth failure Rn(t)

Rn(t) is obtained using the following formula
nA

Rn (t) = exp[-4 (N-n)t]

Let t=10. Then substituting values for 11, ,n, and t in

the above formula we get

.5 .4-3

R5 (10) = exp[-7.337333131x10 x(5.104268844-5)xlO]

= •9923786386

* Mean Time to Failure After nth Failure MTTFn

MTTF is obtained using the following formula:

,l MTTFn = 1 Nnnn

* (N-n)A

Substituting values for N , and n in the above formula

we get
MTTF 5 =1

5=7.33733131xl-3x(5.104268844-5)

1307.0951525t7-25



1.4.2 Examples showing comv~utations for the Goel-Okumoto

Model (Nodel FC1

Consider the following failure counts based on the data

of the previous example.
Interval No. Cumulative No. of

failures
3. 2

2 4

3 5

The parameters to be estimated are a and b.

*ALE of a and b can be obtained by solving the following

pair of equations

a(l-e bt n) =yn -bt b

at ne n=E
i=l e-bt i---bt.i

These equations yield

y t ne- n n (y.-yi-)(tie-b i-t i e-b i-1)

(1-e -tn) i=2. e-t i-l-eb a.

which can be used to obtain the mie of b by the Newton-Raphson

method. Then we can compute the mle of a as

Yn

(1-e -1n)

Use of Newton-Raphson method to findb
n y j- bt- e-bt, -bt

i=l e-bt i-i -e a.b (1-e-b n)

I ~~thenLt b.

-bbt -bt -bt b
(ti 1)2]

e-e (1-c n
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For the above data set

n = 3, to = 0, tI = 1, t2 = 2, t3 = 3

Y0 = 0, Yl = 2, Y2 = 4, Y3 =5

Iteration 1. Let an initial value of b=.Ol,i.e., b(
1 =0.01

Then
-.Olt i  Olt 01til l0t 3

3 (Yi-yi-)(tie '-ti-e y3t3eF -= .01ti. .0t -. 01t3)-

e -e (-S_.01t I  -.01t2  -. 0lt1

=Y (t 1 e ) (Y2 - y ) (t 2 e - t1 e

_.Olt 1 + -.Olt1  -0.3t 2
l-e e -e

y -.Olt 3 _ .Ot 2  -.Olt 3

4(Y 3 Y2 )(t 3 e -t 2 e Y3 t 3 eOl _01 2  -ot 3  -.Olt 3

01 1t 02 01) l3 0
e -e (-

2(e (4-2)(2e-- 0 2  e - ' 0 1 )  (5_4) (3e-' 0 3 2e - '0 2 )
e' 01 +  e- .01 -. 02 + -.02 -.03-.01 -. 0 e -e

I -.03

(1-e- ' 03 e

- 493.5041667 - 492.5374994

= .966667222210

Now, -.Olti_ -. -*Olti) Olt-1e .Olt

dF 3 (yi-Yi()[(e

.Olt~ -0Olt 1 1 2 2 -.Olt 3
- (tie- -t 1 e 0 1e

-. 0lti_1  -. 01lt 2' -. 01t 3 ) 2
(e -e ) (1-e

-. OlxO e- 01 (_e- 01 e-.01x2]

(e-.OlxO -e'0 1) 2
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.02 e .0 -.02 -. 03 -03 022
(Y3 -Y 2 ) [ (e e 0 3 ) (4e -9e )-(3e-' 2e

+ - o2 -.03 2(e 0 2 _e-

-.03
+ 5-9-e(1 -e )

(y 2 -yl) ((e-' 0 1 -e-' 0 2 ) (e-. 0 1 4e - * 0 2) (2e--O2_e--O1) 2 ]

+ (e-' 01-e- 02 ) 2

2(- - 01 ) (- - 01 ) - - 02 ]

-2((l- e -. 1)(-e - 1) -e -0

(1 01 )2(1-e e-O)

-.01 -. 02 -
0 1  -02 - - 02 _ - . 0 1

+ 2[(e -e )(e- 0 -4Ae )-(2e - e
S+01 -02 2(e -e )

+ [(e - 0 2 e - . 0 3 )(4e - *0 2 _ 9e - *0 3 ) _ (3e- *0 3 _ 2e-02) 2

-02 -03)2
(e-* -e

+ 45-e-
0 3

(1- e-03)
2

2e-.01 2e-.03 e-.05 45e-.03
(-e- ) + - _ 0 2 2  e02 - 03 2 (1-•(e .0)- (e- - e " (l-e.0)

= -49999.58334 + 49996.25017

= -3.33316667270

and

Ab(1) = -F- dF/db = -.966667222210 - -3.33316667270

= .2900146669 > .0001

Let E = 0.0001. Since b (1)>E, we go to iteration 2.

Iteration 2. b ( 2 ) = b ( ) + Ab(1) = .3000146669 = .3
.3t. -.-.t3t

3 (yi- yi-) (tie - ti-le 3t ) Y3 t 3 e

F i -.3ti_ 1  -. 3t 3

e -e (1-e

2(e " 3) 2(2e - .6 -e - .3 ) + 1(3e - . 9 - 2e - 6 9 53e- .9

1-e 3+ -.3 -.6 -.6 - 9 e
-" e "-e (e-e- ) (-e " '
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= 10.2906087 - 10.27600431

= .0146665525129

S3ti - ')(t 2 e  3ti- 2 -'3ti)
3 (yi-Yi_l)[(e - e e- tie

i=1 -.3ti -3t i 2 2 -. 3t3
(t - tie ) ] Y3 t3 e

3t i-l 3t2 (l-3t2

-3 i-3 - 6i)2(

2[(i-e 3)(-e - 3 ) _e- 6 ]

(- e-
3) 2

+ 2[(e-' -'6) (e 3  4e-' 6) -(2e- 6 - e- 3 )21

(e- -3 _ e-.6)2

+ [(e-' 6  e-' 9 )(4e- -69e- 9 ) - (3e- 9 -2e-' 6 21 + 45e-'9

(e- 6 e- .9)2 (1- e- '9

.2e- .3 1 2e-.9 + e-1.5 + 45e- 9

-3 -6(e e-3(e2 -6 929(-e " e - -e )(l-e"

= -55.13532562 + 51.94726586 = -3.18805975584

Ab (2 )  -F "dF/db = -. 0146665525129 - -3.18805975584

= .004600463491

Since Ab(2)>E, we continue with iteration 3.

Iteration 3. b (3 ) = b (2 ) +Ab (2 ) = .3000146669 + .004600463491

= .30461513036 ~ .305

3 -. 305t i  -. 305te -. 305t 3

Si-I i - 1 e t3 305t
.= -.305t 1  -.305ti _.-e 3t

ile -e (-

2(e-. 3 0 5  2(2e-.610 - e-. 305 . (3e-.915 -2e-.610

1- 305 +  -.305 -.610 e-.610 -.9151 -e e -e e -e

S 5-3e -.915
(1 -e - ' 9 1 15 )

10.04088223 - 10.04087226 = 9.96719302759 x 10
- 6
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-. 305t -. 305t i  2 -.305t ..1  2 .305t i3 (yi-yi~l) ((e - e ') (t ie 5t-- tie2 -

-. 305t i  -. 305t.-) 2 2 -'305t 3
- (tie - ti 1 e ] y3 t3 e

-.305t. -. 305t. 2 + -. 305t3

(e i-1_e - ) (i- e 2

2[(l- e- '305 (-e - 305 ) - e- '610

(1-e- 
30 5  2

+ 2[(e - . 3 0 5 _ e - 6 1 0) (e-*3 0 5 _ 4e- 6 1 0) _ (2e- 610 _ e- 305)2]

(e- "305 -e-"610) 2

+ lf(e - 6 1 0 _e-. 9 1 5 )(4e-*.610_ 9e-* 9 1 5 ) - (3e- 9 1 5 _ 2e- 6 1 0 ) 2

(e-.610 e -.915) 2
-. 91545 -e

+ - 915 2

(1-e "

2e-" 305 2e-" 915 e-1.525

305 2 + 305 -. 610 2 + e(1-e " (e - e ) (e 6 1 0  e "

- 915
4e-+ ~ 3

= -53.47.0157 + 50.28643996 = -3.18371704092

(3 ) = -F dF/db = -9.96719302759 x 10- 6 " -3.18371704092

= 3.1306781 x 10 - 6
(3)

Since Ab )<E, we get

S= b ( 3 ) + b ( 3 ) = 3.0461826104 x 10 - I

and

b)

-.30461826104 x 3 .346957421
(--bt 3  (- e

For this data set

a = 8.34695742

=43.0461826104xi0
- 1

, 7-30
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Performance Measures

After estimation of the parameters a and b the next

step is to obtain performance measures as follows:

. Expected Number of Faults Detected by Time t E[N(t)]

E[N(t)] is obtained using the following formula:

E[N(t)] = a(l- )b

Let t=10 then substituting values for a,b, and t

in the above formula we get

-3.0461826104x10-1 x10)
E[N(10)] = 8.34695742x(l-e

= 7.950397851.

* Expected Number of Pemaining Faults by Time t, E[ (t)j

E(N(t)] is obtained using the following formula

E[N(t)] = ae -]t

Let t=10 then substituting values for a,b, and t

in the above formula we get

-3 0461826104x10-1x10)E[N(10)] = 8-3469742x(e - 3 * 4

= 8.34695742xe
-3 .04 61 8 26 10

4

= 0.3965595689

* Reliability at Time t after nth testing Interval R (t)

R n (t) is obtained from the following formula

R (t) = exp[-a{exp[-bxn]-exp[-bx(n+t)]}]~n

For the above example n=3. Let t be 1. After sub-

stituting values of a, b, n, and t in the above formula

we get

k3 = exp[-8.34695742x{exp[-0.30461826104x3]

-expt-0.30461826104x(3+l 11 = 0.4152494843

7-31



*Mean Time to Failure After nth Testing interval MTTFn

MTTF is obtained using the following formulan

MTTF =
n (n) abexp[-bxnj

For the above example n=3 and substituting values for

a and bin the above formula we get

IMTTF 31
3 8-34695742x0. 30461826104xexp [-0. 30461826104x31

= .9808216948
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8. CONCLUDING REMARKS

1. The objective of this report was to present information

relevant to the selection and use of an analytical model

for software reliability assessment. Towards this goal,

we presented a summary of the available models in Sections

3, 4, and 5 which was backed up by detailed information

in Appendices C, D, and E.

2. An important step in selecting a model is to develop a

framework for describing the software development en-

vironment which can be mapped onto a set of assumptions

that are consistent with those of the selected model or

models. This is a difficult task and requires a clear

understanding of the development environment as well as

of the model assumptions. We feel that the material in

Section 6 should be of great help in accomplishing this.

It should, however, be pointed out that the assumptions

required to formulate and develop an analytical model

are rarely, if ever, satisfied in the real world. In

other words, perfect adherence to model assumptions is

an ideal which cannot be met in practice. A realistic

approach, then, is to select a reliability model which

captures the essence of the modelled environment.

3. It should also be pointed out that the arguments pre-

sented in Section 6.1 about the assumptions and in
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Section 6.2 about the applicability 
of the models

are based on our interpretation 
of the phases in the

software development process. 
If particular situations

differ from the scenarios 
presented there, appropriate

modifications must be made 
in the model selection process.

I

$

I
I

8-2

I __



9. References

[ABR65] Abramowitz, M. and Stegun, I.A. (1965), Handbook of
Mathematical Functions, Dover Publications, Inc.

[ALL78] Allen, A.O. (1978), Probability, Statistics and Queue-
ing Theory, Academic Press.

[AND79] Anderson, T. and Randell, B. (Editors) (1979), Computing
System Reliability, An Advanced Course, Cambridge
University Press, London.

[ANG80] Angus, J.E., Schafer, R.E., and Sukert, A. (1980), "Soft-
ware Reliability Model Validation," Proc. Annual
Reliability and Maintainability Symposium, San
Francisco, CA, pp. 191-193.

[AVI77] Avizienis, A. (1977), "Fault-Tolerant Computing: Pro-
gress, Problems, and Prospects," Proc. IFIP Congress
1977, Toronto, Canada, pp. 405-420.

[BAR751 Barlow, R.E. and Proschan, F. (1975), Statistical Theory
of Reliability and Life Testing: Probability Models,
Holt, Rinehart and Winston, Inc.

[BAS83) Basili, V.R., Selby, R.W. and Phillips, T. (1983), "Metric
Analysis and Data Validation Across FORTRAN Projects,"
IEEE Transactions on Software Engineering (to appear).

[BAS74] Basin, S.L. (1974), Estimation of Software Error Rate
Via Capture-Recapture Sampling, Science Applications,
Inc., Palo Alto, CA.

[BAS80] Bastani, F.B. (1980), "An Input Domain Based Theory of
Software Reliability and Its Application," Ph.D.
Dissertation, University of California, Berkeley.

(BE179] Beightler, C.S., Phillips, D.T., and Wilde, D.J. (1979),
Foundations of Optimization, Prentice-Hall.

[BEL76] Belady, L.A. and Lehman, M.M. (1976), "A Model of Large
Program Development," IBM Systems Journal, Vol. 15,
No. 3, pp. 225-252.

[BOE76] Boehm, B.W., Brown, J.R., and Lipow, M. (1976), "Quanti-
tative Evaluation of Software Quality," Proc. 2nd

1International Conference on Software Engineering.

1 ([BR075] Brown, J.R., Lipow, M. (1975), "Testing for Software Re-
liability," Proc. 1975 International Conference Re-
liable Software, Los Angeles, CA, pp. 518-527.

9-14,



[BRO80] Brooks, W.D. and Motley, R.W. (1980), "Analysis of Dis-
crete Software Reliability Models," RADC-TR-80-84.

[BRO72] Brown, M. (1972), "Statistical Analysis of Non-Homogene-
ous Poisson Processes," in Stochastic Point Processes,
edited by P.A.W. Lewis, John Wiley & Sons, New York,
pp. 67-89.

(CAS80] Castillo, X. and Siewiorek, D.P. (1980), "A Performance
Reliability Model for Computing Systems," Dept. of
Computer Science, Carnegie-Mellon University.

[CHA78] Champine, G.A. (1978), "What Makes a System Reliable,"
Datamation, pp. 195-206.

[CHA78] Chandy, K.M. and Yeh, R.T. (Editors) (1978), Current
Trends in Programming Methodology, Vol. III: Soft-
ware Modeling, Prentice-Hall.

[CH080] Cho, C.K. (1980), An Introduction to Software Quality
Control, John Wiley & Sons.

[CIN75J Cinlar, E. (1975), Introduction to Stochastic Processes,
Prentice-Hall.

[CLA75] Clarke, L. (1975), "A System to Generate Test Data and
Symbolically Execute Programs," Tech. Report
#CU-CS-060-75, Dept. of Computer Science, Univ. of
Colorado, Boulder.

(COX65] Cox, D.R. and Miller, H.D. (1965), The Theory of Stochas-
tic Processes, Wiley and Sons, Inc.

[COX661 Cox, D.R. and Lewis, P.A.W. (1966), The StatisticalAnalysis of Series of Events, Methuen, London.

[DAL77] Daly, E.B. (1977), "Management of Software Development,"
IEEE Transactions on Software Engineering, pp. 230-242.

[DON75] Donelson, J., III, (1975), Duane's Reliability Growth
Model as a Non-Homogeneous Poisson Process, IDA
Log. No. HQ76-18012, Paper P-1162.

[DUA64] Duane, J.T. (1964), "Learning Curve Approach to Reli-
ability Monitoring," IEEE Transactions Aerospace,

| I Vol. 2, pp. 563-566.

9-2

-. 10&



[DUN82] Dunn, R. and Ullman, R. (1982), Quality Assurance for
Computer Software, McGraw-Hill Book Company.

[DURSO] Duran, J.W. and Wiorkowski, J.J. (1980), "Quantifying
Software Validity by Sampling," IEEE Transactions
on Reliability, Vol. R-29, No. 2.

[END751 Endres, A. (1975), "An Analysis of Errors and Their
Causes in System Programs," Proc. International
Conference on Reliability Software, Los Angeles,
CA, pp. 327-336.

[FEL57] Feller, W. (1957), An Introduction to Probability Theory
and Its Applications, 2nd Ed., Vol. I, John Wiley
and Sons, Inc.

[FEL66] Feller, W. (1966), An Introduction to Probability Theory
and Its Applications, Vol. II, John Wiley and Sons,
Inc.

(FIN761 Finkelstein, J.M. (1976), "Confidence Bounds on the Para-
meters of the Weibull Process," Technometrics,
Vol. 18, No. 1, pp. 115-117.

[FOR77] Forman, E.H. and Singpurwalla, N.D. (1977), "An Empirical
Stopping Rule for Debugging and Testing Computer
Software," Journal of the American Statistical
Association, Vol. 72, No. 360, pp. 750-757.

[FRI771 Fries, M.J. (1977), Software Error Data Acquisition,
Boeing Aerospace Co., Final Technical Report, RADC-
TR-77-130, AD A039-916.

(GER76J Gerhart, S. and Yelowitz, L. (1976), "Observations of
Fallibility in Applications of Modern Programming
Methodologies," IEEE Transactions on Software
Engineering.

[GIL771 Gilb, T., Software Metrics, Winthrop Publishers, Inc.,
Massachusetts, 1977.

[GIR73] Girard, E. and Rault, J.C. (1973), "A Programming Tech-
nique for Software Reliability," IEEE Symposium on
Computer Software Reliability.

[GLA79] Glass, R.L. (1979), Software Reliability Guidebook,
Prentice-Hall, Inc.

[GLASII Glass, R.L. (1981), "Persistent Software Errors," IEEE
Transactions on Software Engineering, Vol. SE-7.

9-3

i



[GOE77] Goel, A.L. (1977), Summary of Technical Progress:
Bayesian Software Reliability Prediction Models,
RADC-TR-77-112, Syracuse University, AD A039-022.

[GOE78a] Goel, A.L. and Okumoto, K. (1978), Bayesian Software
Correction Limit Policies, Final Technical Report,
Syracuse University, RADC-TR-78-155, Vol. 2 (of 5),
AD A057-872.

[GOE78b] Goel, A.L. and Okumoto, K. (1978), An Imperfect Debugging
Model for Software Reliability, Final Technical Re-
port, Syracuse University, RADC-TR-78-155, Vol. 1
(of 5), AD A057-879.

[GOE78c] Goel, A.L., and Okumoto, K. (1978), "A Time Dependent
Error Detection Rate Model for a Large Scale Soft-
ware System," Proc. Third USA-Japan Computer Con-
ference, San Francisco, CA, pp. 35-40.

[GOE78d] Goel, A.L. and Okumoto, K. (1978), "An Analysis of Re-
current Software Failures in a Real-Time Control
System," Proc. Annual Technical Conference, ACM,
Washington, DC, pp. 496-500.

[GOE79a] Goel, A.L. (1979), "Reliability and Other Performance
Measures of Computer Software," Proc. First Inter-
national Conference on Reliability and Exploitation
of Computer Systems, Wroclaw, Poland, pp. 23-31.

[GOE79b) Goel, A.L. and Okumoto, K. (1979), "A Time Dependent
Error Detection Rate Model for Software Reliability
and Other Performance Measures," IEEE Transactions
on Reliability, Vol. R-28, No. 3, pp. 206-211.

(GOE79c] Goel, A.L. and Okumoto, K. (1979), "A Markovian Model
for Reliability and Other Performance Measures of
Software Systems," Proc. National Computer Confer-
ence, New York, Vol. 48, pp. 769-774.

[GOE80a] Goel, A.L. (1980), "A Software Error Detection Model
with Applications," Journal of Systems and Soft-
ware, Vol. 1, No. 3, pp. 243-44i4.

(GOE80b] Goel, A.L. (1980), "A Summary of the Discussion on an
Analysis of Computer Software Reliability Models,"
IEEE Transactions on Software Engineering, Vol. SE-6,No. 5, pp. 501-502.

9-4

A



[GOE82a] Goel, A.L. (1982), "Software Reliability Modelling:
An Overview and a Case Study," International
Journal of Reliability and Safety.

[GOE82b] Goel, A.L. (1982), Software Reliability Modelling and
Estimation Techniques, RADC-TR-82-263.

[GOE83] Goel, A.L., Basili, V.R., and Valdes, P.M. (1983), "When
and How to Use a Software Reliability Model," Proc.
Seventh Software Engineering Workshop, NASA/GSFC
(to appear).

[G0077] Goodenough, J. and Gerhart, S. (1977), "Toward a Theory
of Testing: Data Selection Criteria," Current
Trends in Programming Methodology, Vol. 2, R.T. Yeh,
Ed., Englewood Cliffs, NJ, Prentice-Hall.

[GO079] Goodenough, J. (1979), "A Survey of Program Testing
Issues," Research Directions in Software Technology,
The MIT Press.

(GO080] Goodenough, J. (1980), "The ADA Compiler Validation Cap-
ability," Proc. ACM SIGPLAN Symposium on the ADA
Progravming Language, Boston, MA.

[GR178] Griffiths, S.N. (1978), "Design Methodologies -- A Com-
parison," Structured Analysis and Design, Vol. II,
Infotech

(HAL77] Halsted, M.H. (1977), Elements of Software Science,
Elsevier North Holland Publishing Co., New York.

[HAN76) Han, Y. (1976), "A Systematic Study of Computer System

Reliability," Ph.D. Thesis, University of California,
Berkeley.

[H078] Ho, Siu-Bun Franklin, "A Systematic Approach to the De-
velopment and Validation of Software for Critical
Applications," Ph.D. Dissertation, Univ. of Cali-
fornia, Berkeley, 1978.

[HOW80] Howden, W. (1980), "Functional Program Testing," IEEE
Transactions on Software Engineering, Vol. SE-6,
No. 2 , pp. 162-169.

[HUA75] Huang, J.C. (1975), "An Approach to Program Testing,"
Computing Surveys, Vol. 7, No. 3 , pp. 113-128.

9-5

IJ ill



[JEL72] Jelinski, Z. and Moranda, P. (1972), "Software Reli-
ability Research," in Statistical Computer Per-
formance Evaluation, W. Freiberger (Ed.), Aca-
demic Press, pp. 465-484.

[JEL79I Jensen, R.W. and Tonies, C.C. (1979), Software Engi-
neering, Prentice-Hall, Inc.

[JON80] Jones, C.B. (1980), Software Development - A Rigorous
Approach, Prentice-Hall International Series in
Computer Science, London.

[KAR75] Karlin, S. and Taylor, H.M. (1975), A First Course in
Stochastic Processes, Academic Press, New York.

[KLE76] Kleinrock, L. (1976), Queueing Systems, Vol. II: Com-
puter Applications, John Wiley & Sons, Inc.,
New York.

[KOB78] Kobayashi, H. (1978), Modeling and Analysis: An Intro-
duction to System Performance Evaluation Method-
ology, Addison-Wesley.

[LAN77] Landrault, C. and Laprie, J.S. (1977), "Reliability and
Availability Modeling of Systems Featuring Hard-
ware and Software Faults," Proc. 7th Annual Inter-
national Conference on Fault-Tolerant Computing,
Los Angeles, CA.

[LEW64] Lewis, P.A.W. (1964), "Implications of a Failure Model

for the Use and Maintenance of Computers," Journal
of Applied Probability, Vol. 1, pp. 347-368.

[LEW76] Lewis, P.A.W. and Shedler, G.S. (1976), "Statistical
Analysis of Non-stationary Series of Events in a
Data Base System," IBM Journal of Research and
Development, Vol. 20, pp. 465-482.

[LIP721 Lipow, M. (1972), Estimation of Software Package Re-

sidual Errors, TRW Software Series Report, TRW-

SS-72-09, Redondo Beach, CA.

[LIP73] Lipow, M. (1973), Maximum Likelihood Estimation of
Parameters of a Software Time-to-Failure Distribu-
tion, TRW Systems Group Report, 2260.1.9-73B-15,
Reo-ndo Beach, CA.4LIP741 Lipow, M. (1974), "Some Variations of a Model for Soft-
ware Time-to-Failure," TRW Systems Group, Corres-
pondence ML-74-2260.I.9-21.

9-6



[LIT73] Littlewood, B. and Verall, J.L. (1973), "A Bayesian
Reliability Growth Model for Computer Software,"
Applied Statistics, Vol. 22, No. 3, pp. 332-346.

[LIT75] Littlewood, B. (1975), "A Reliability Model for Systems
with Markov Structure," Applied Statistics, Vol. 24,
No. 2, pp. 172-177.

[LIT76) Littlewood, B. (1976), "A Semi-Markov Model for Software
Reliability with Failure Costs," Proc. MRI Symposium
on Software Engineering, New York, pp. 281-300.

[LIT80] Littlewood, B. (1980), "Theories of Software Reliability:
How Good Are They and How Can They Be Improved?"
IEEE Transactions on Software Engineering, Vol. SE-6,
No. 5.

[LLO79] Lloyd, D.K. and M. Lipow (1979), "Reliability: Management,
Methods, and Mathematics," published by the authors,
Redondo Beach, CA.

[LON8O] Longbottom, R., Computer System Reliability, John Wiley
and Sons, Inc.

[MAG52] Maguire, B.A., Pearson, E.S., and Wynn, A.H.A. (1952),
"The Time Intervals Between Industrial Accidents,"
Biometrika, Vol. 39, pp. 168-180.

[MAN71 Mann, N.R., Schafer, R.E., and Singpurwalla, N.D. (1974),
Methods for Statistical Analysis of Reliability and
Life Data, John Wiley & Sons.

[MEY78] Meyer, J.F. (1978), "On Evaluating the Performability of
Degradable Computing Systems," Proc. 8th Annual
International Conference on Fault-Tolerant Computing,
pp. 44-49.

[MIL761 Miller, D.R. (1976), "Order Statistics, Poisson Processes
and Repairable Systems," Journal of Applied Prob-
ability, Vol. 13, pp. 519-529.

[MIL72] Mills, H.D. (1972), On the Statistical Validation of
Computer Programs, IBM Federal Systems Division,
Gaithersburg, MD, Report 72-6015.

[MIY75] Miyamoto, I. (1975), "Software Reliability in On-Line
Real Time Environment," Proc. International Confer-
ence on Reliable Software, Los Angeles, CA,
pp. 194-203.

9-7

* re *



[MOE761 Moeller, S.K. (1976), "The Rasch-Weibull Process,"
Scandanavian Journal of Statistics, Vol. 3,
pp. 107-115.

[MOR75a] Moranda, P.B. (1975), "Prediction of Software Reli-
ability During Debuggiing," Proc. Annual Reli-
ability and Maintainability Sympoisum, Washington,
DC, pp. 327-332.

[MOR75b] Moranda, P.B. (1975), "A Comparison of Software Error-
Rate Models," Proc. 1975 Texas Conference on Com-
puting, pp. 2A6.1-6.9.

[MOR75c] Moranda, P.B. (1975), "Probability-Based Models for the
Failures During Burn-In Phase," Joint National
Meeting ORSA/TIMS, Las Vegas, NV.

[MOR8I] Moranda, P.B. (1981), "Event-Altered Rate Models for
General Reliability Analysis," IEEE Transactions
on Reliability, Vol. R-30, No. 2.

[MOR82] Moranda, P.B. (1982), Private communication.

[MUS75I Musa, J.D. (1975), "A Theory of Software Reliability
and Its Application," IEEE Transactions on Software
Engineering, Vol. SE-I, No. 3, pp. 312-327.

[MUSB0] Musa, J.D., Software Reliability Data, DACS, RADC,
New York.

[MUT77I Muth, E.J. (1977), Transform Method with Applications
to Engineering and Operations Research, Prentice-
Hall.

[MYE75] Myers, G.J. (1975), Reliable Software Through Composite
Design, Petrocelli/Charter, New York.

[MYE76] Myers, G.J. (1976), Software Reliability, Principles
and Practices, John Wiley & Sons, New York.

[MYE79] Myers, G.J. (1979), The Art of Software Testing, John

Wiley and Sons, Inc.

[NEL75] Nelson, E.C. (1975), Software Reliability, TRW SoftwareSeries, TRW-SS-75-05, Redondo Beach, CA.

[NEL78] Nelson, E. (1978), "Estimating Software Reliability from
Test Data," Microelectronics and Reliability,

Vol. 17, pp. 67-74.

9-8

........ .



[OKU781 Okumoto, K. and Goel, A.L. (1978), Classical and
Bayesian Inference for the Software Imperfect
Debugging Model, Syracuse University, Final
Technical Report, RADC-TR-78-155, Vol. 2 (of 5)
AD A057-871.

[OKU78] Okumoto, K. and Goel, A.L. (1978), Availability Analysis
of Software Systems Under Imperfect Maintenance,
Syracuse University, Final Technical Report, RADC-
TR-78-155, Vol. 3 (of 5), AD A057-872.

[OKU78] Okumoto, K. and Goel, A.L. (1973), "Availability and
Other Performance Measures of Software Systems
Under Imperfect Maintenance," Proc. COMPSAC, 1978,
pp. 66-71.

[ORR771 Orr, K.T. (1977), "Using Structured Systems Design,"
Structured Systems Development, Yourdon Press.

[ORR78] Orr, K.T. (1978), "Introducting Structured Systems Design,"
Structured Analysis and Design, Vol. II, Infotech
International Limited.

[PIE76] Pierskalla, W.P. and Voelker, J.A. (1976), "A Survey of
Maintenance Models: The Control and Surveillance
of Deteriorating Systems," Naval Research Logistics
Quarterly, Vol. 23, No. 3, pp. 353-388.

[PR0631 Proschan, F. (1963), "Theoretical Explanation of Observed
Decreasing Failure Rate," Technometrics, Vol. 5,
No. 3, pp. 375-383.

[PYK61] Pyke, R. (1961), "Markov Renewal Processes: Definitions

and Preliminary Properties," Annals of Mathematical
Statistics, Vol. 32, pp. 1231-1242.

[RAH78] Raha, D., and Silva, N. (1978), "Digital Communication
Systems - Reliability Trends," Proc. 1979 AnnualReliability and Maintenance Symposium, pp. 452-459.

[RAM82] Ramamoorthy, C.V. and Bastani, F.B. (1981), "Software Re-
liability - Status and Perspectives," IEEE Trans-
actions on Software Engineering, Vol. SE-8, No. 4.

(REY79] Reynolds, J. (1981), The Craft of Programming, Prentice-
Hall.

" I [RIC8lI Richardson, D.J. (1981), "A Partition Analysis Method
to Demonstrate Program Reliability," Ph.D. Disser-

, , tation, University of Massachusetts, Amherst.

9-9

' iM



CROH761 Rohatgi, V.K. (19'76), An Introduction to Probabil.ity
Theory and Mathematical Statistics, John Wiley
and Sons, Inc.

[R0S761 Ross, S.M. (1.976), A2ppied ProbabilityModels with Opti-
mization Applications, Holden-Day.

tR0U731 Roussas, G.G. (1973), A First Course in Mathematical
Statistics, Addison Wesley Publishing Co.

tRUD79] Rudkin, R.I., and Shere, K.D. (1979), "Structured Decom-
position Diagram: A New Technique for Systems
Analysis," Datamation.

(RYE77] Rye, P. et al. (1977), SoftwareSystems Development:
A CSDL Project History, The Charles Start Draper
Laboratory, Inc., Final Technical Report, RADC-
TR-77--213, AD A04~2-186.

[SCH79] Schafer, R.E., et al. (1979), Validation of Software Re-
liability Models, Huges Ai~rcraft Co., Final Technical
Re-port, RADC-TR-78-147, AD A072-113.

ESCH73] Schick, G.J. and Wolverton, R.W. (1973), "Assessment of
Software Reliability," 11th Annual M*eeting of the
German Operations Resear~ch Soc2.ety, DGOR, Hamburg,
Germany; also in Proc. Operations Research, Physica-
Verlag, Wurzberg-Wien, pp. 395-422.

(5CH78] Schick, G.J. and Wolverton, R.W. (1978), "An Analysis of
Computing Software Reliability Models," IEEE Trans.
on SoftwareEngineering, Vol. SE-L4, No. 2, pp. 10L4-120.ii 1CH721 Schneidewind, N.F. (1972), "An Approach to Software Reli-
ability Prediction and Quality Control," Proc. AFIPS
Fall Joint Computer Conference, Vol. 41, Part 11,
pp. 837-838.

E5CH751 Schneidewind, N.F. (1975), "Analysis of Error Processes
in Computer Software," Proc. International Confer-
ence on Reliable Software, Los Angeles, CA, pp. 337-
34&6.

[SH0721 Shooman, M.L. (1972) , "Probabilistic Models for Software
Reliability Prediction," Statistical Computer Per-
formance Evaluation, W. Freiberger (Ed.) , Academic$4 Press, pp. 485-502.

9-10



(SH0731 Shooman, M. (1973), "Operational Testing and Software
Reliability Estimation During Program Development,"
1973 IEEE Symposium on Computer Software Reli-
ability, New York City, April 30-May 2.

[SHO751 Shooman, M.L. (1975), "Software Reliability Measurement
and Models," Proc. 1975 Annual Reliability and
Maintainability Symposium, pp. 485-491.

(SHO76) Shooman, M.L. (1976), "Structural Models for Software
Reliability and Prediction," Proc. 2nd International
Conference on Software Engineering, pp. 268-273.

[SNY75] Snyder, D.L. (1975), Random Point Processes, John Wiley
and Sons, Inc.

[SUK76] Sukert, A.N. (1976), A Software Reliability Modeling
Study, In-house Technical Report, RADC-TR-76-247,
AD A030-437.

[SUK77] Sukert, A.N. (1977), "An Investigation of Software Reli-
ability Models," Proc. Annual Reliability and Main-
tainability Symposium, Philadelphia, PA, pp. 478-484.

[SUK78] Sukert, A.N. and Goel, A.L. (1978), "Error Modeling Appli-
cations in Software Quality Assurance," Proc. Soft-
ware Quality and Assurance Workshop, San Diego, CA,
pp. 3-38.

[SUn801 Sukert, A.N. and Goel, A.L. (1980), "A Guidebook for Soft-
ware Reliability Assessment," Proc. Annual Reli-
ability and Maintainability Symposium, San Francisco,
CA, pp. 188-190.

[TAI80] Tai, K.C. (1980), "Program Testing Complexity and Test
Criteria," IEEE Transactions on Software Engineer-
ing, Vol. SE-6, No. 6.

(THA76] Thayer, T.A., Lipow, M., and Nelson, E.C. (1976), Software
Reliability Study, TRW Defense and Space Systems
Group, Final Technical Report, RADC-TR-76-238, AD A030-
798.

[THA78] Thayer, T.A., Lipow, M., and Nelson, E.C. (1978), Soft-
ware Reliability, North-Holland, Amsterdam.

(TRI751 Trivedi, A.K. (1975), "Computer Software Reliability:
Many-State Markov Modelling Techniques," Ph.D.
Dissertation, Dept. of Electrical Engr., Polytechnic
Institute of New York, NY.

9-11



(TR174] Trivedi, A.K. and Shooman, M.L. (1974), "A Markov Model
for the Evaluation of Computer Software Performance,"
Research Report, Polytechnic Institute EE/EP, 74-011-
EER 110.

[TRI7S] Trivedi, A.K. and Shooman, M.L. (1975), Computer Software
Reliability: Many State Markov Modelling Techniques,
Polytechnic Institute of New York, Interim Report,
RADC-TR-75-169, AD 014-824.

(WAG73] Wagoner, W.L. (1973), The Final Report on a Software Re-
liability Measurement Study, Technology Division,
The Aerospace Corp., Report No. TOR-0074 (4112)-l,
El Segundo, CA.

(WEY80] Weyuker, E. and T. Ostrand (1980), "Theories of Program
Testing and the Application of Revealing Subdomains,"
IEEE Transactions on Software Engineering, Vol. SE-6,
No. 3.

[WIL77] Willman, H.E., Jr., et al. (1977), Software Systems Reli-
ability: A Raytheon Project History, Raytheon Co.,
Final Technical Report, RADC-TR-77-188.

[WUL75] Wulf, W.A. (1975), "Reliable Hardware/Software Architec-
ture," IEEE Transactions on Software Engineering,
Vol. SE-l, No. 2, pp. 233-240.

[YAU79] Yau, S.S. and MacGregor, T.E. (1979), On Software Reli-
ability Modeling, Interim Report, Northwestern
University, RADC-TR-79-129.

[YOU721 Yourdon, E. (1972), "Reliability Measurements for Third
Generation Computer Systems," Proc. Annual Reli-
ability and Maintainability Symposium, pp. 174-183.

[YOU751 Yourdon, E. (1975), Techniques of Program Structure and
Design, Prentice-Hall, Inc., Englewood lif, NJ.

[ZEI8l] Zeil, S. and White, L. (1981), "Sufficient Test Sets for
Path Analysis Testing Strategies," Proc. 5th Inter-
national Conference on Software Engineering,
San Diego, CA.

[ZIS75] Zislis, P. (1973), "Semantic Decomposition of Computer
Programs: An Aid to Program Testing," Acta-Infor-
matica 4.

| . [ZWE8l) Zweben, S. and Haley, A. (1981), "An Approach to Reli-
able Integration Testing," Technical Report No. 81-5,
Ohio State University.

9-12



Anpendix A

SOFTWARE ERRORS: THEIR SOURCES AND CLASSIFICATION

A.1 Sources of Software Errors

Software (also called program) is essentially an

instrument for transforming a discrete set of inputs into

a discrete set of outputs (see Figure A.1). It comprises

of a set of coded statements whose function may basically

be one of the following:

1. Evaluate an expression and store the result

in a temporary or nermanent location.

2. Decide which statement to execute next.

3. Perform input/output operations.

Since, to a large extent software is produced by humans, the

finished software product is often imperfect. It is imper-

fect in the sense that a discrepancy exists between what

the software can do versus what the user or the i omputing

environment wants it to do. The computinR environment refers

to the physical machine, operating system, compiler and

translators, utilities, etc. These discrepancies are what

we call software errors (see Figure A.2). Basically, the

software errors can be attributed to the following:

1. Ignorance of the user requirements,

1 . Ignorance of the rules of the computing

environment, and
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3. Poor communication of software requirements

between the user and the programmer or poor

documentation of the software by the programmer.

The fact of the matter is even if we know that soft-

ware contains errors, we may not know with certainty the

exact identity of these errors.

Currently, there are two major paths one can follow

to expose software errors:

1. Program proving, and

2. Program testing.

Program proving is more formal and mathematical while

program testing is more practical and still remains to

be heuristic in its approach. The approach in program

proving is the construction of a finite sequence of logi-

cal statements ending in the statement (Osually the output

specification statement) to be proved. Each of the logi-

cal statements is an axiom or is a statement derived from

earlier statements by the application of an inference

rule. Program proving making use of inference rules is

known as the Inductive Assertion Method. This method was

mainly popularized by Floyd, Hoare, Dijkstra and recently

Reynolds. Other work on program proving is the work on

the Symbolic Execution Metnod. This method is the basis

of some automatic proaram verifiers. Despite the formalism
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and mathematical exactness of program proving, it is

still an imperfect tool for verifying orogram correct-

ness. Gerhart and Yelowitz [GER 76] showed several

programs which were proven to be correct but still con-

tained errors. The errors were due to failures

in defining what exactly to prove and were not failures

of the mechanics of the proof itself.

Program testing is the symbolic or physical execu-

tion of a set of test cases with the intent of exposing

embedded errors (if any) in the program. Like program

proving, program testing remains an imperfect tool for

verifying program correctness. A given testing strategy

is good for exposing certain kinds of errors but not all

possible kinds of errors in a program. An advantage of

testing is that it provides accurate information about a

program's actual behavior in its actual computing environ-

ment; proving is limited to conclusions about the program's

behavior in a postulated environment.

Neither proving nor testing can, in practice, guaran-

tee complete confidence on the correctness of programs.

Each has its pluses and minuses. They should not be

viewed as competing tools. They are, in fact, complementary

methods for decreasinq the likelihood of program failure

I[GOO 77].
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A.1. SOFTWARE ERROR CLASSIFICATION

A systematic study of software errors in a program

requires knowing what specifically these errors are and

knowing which tool(s) to use to expose particular types

of software errors. Software errors can be grouped as

syntax, semantic, runtime, specification and performance

errors.

A.2.1 Syntax Errors

These errors are due to discrepancies between the

program code and the syntax rules governing the parser

or lexical analyzer of a program translator. These are

the easiest errors to detect. They can be detected by

visual inspection of the code or can be detected mechani-

cally during the program compilation process. Experienced

programmers rarely commit syntax errors.

A.2.2 Semantic Errors

These errors are due to discrepanties between the

program code and what the semantic analyzer of the computing

environment accepts. Among the popular kinds of semantic

errors are typechecking errors and implementation restric-

tion errors. Again, they may be detected by the semantic

analyzer of a program translator or by visual inspection.
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Syntax and semantic errors are detected during the

compilation stage of a program. A program having syntax

and/or semantic errors cannot be executed. Syntax and

semantic errors are mainly due to the ignorance/negliqence

on the part of the programmer about the restrictions and

limitations of the language (s)he is using.

A.2.3 Runtime Errors

As the name implies, runtime errors occur during

the actural running of a program. They may be further

classified into three categories:

Domain errors

A domain error occurs whenever the value of a

progran variable exceeds its declared range or exceeds

the physical limits of the hardware representing the

variable. The declared range of a variable is done im-

plicitly or explicitly. FORTRAN, for example, assigns

types to variables based on the variable name or based

on a declaration statement. PASCAL requires all variables

to be explicitly declared in a declaration statement.

PASCAL has facilities to declare ranges by enumeration

and/or subsets of numeric domains.

Some program translators produce runtime code for

checking certain types of domain errors. Some have built-

in recovery features for domain errors (e.q. PL/l, COBOL)

and others (e.g. FORTRAN) simply abort execution upon

the occurrence of a domain error. Certain compilers, like
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PASCAL, automatically check for values outside a declared

range.

Domain errors are a serious matter because

a) program execution is aborted, and/or

b) proqram results are incorrect.

Execution abortion may be fatal especially in real-time

systems. Despite their seriousness, domain errors have

never been formally and extensively studied in the litera-

ture. This is because detection of domain errors can be

very difficult. They require exact specification of the

ranges of the input variables. Also, the test values

required to expose these errors may occur at the input

domain's boundary or inside the input domain itself.

Computational errors

Computational errors, sometimes known as logic errors,

result whenever the program results in an incorrect output.

The incorrect output may be due to a wrong formula, anA
incorrect control flow, assignment to a wrong variable,

incorrect parameter passing, etc.

It is not possible to generate runtime code to de-

tect computational errors during program execution. This

is because computational errors are really discrepancies

4 between the program's output and the program's specifica-

tions.
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Computational errors due to incorrect program con-

structs and statements may be detected by any of the

structure dependent or structure independent testing

techniques. However, none of these tools can guarantee

total absence of these types of computational errors in

a program. Computational errors due to missinq program

constructs and statements may be detected by any of the

structure independent testing techniques. Again, nore

of these tools can guarantee total absence of comnutational

errors due to missing paths.

Non-Termination errors

Non-termination error is simply the failure of a

program to terminate in finite time without outside inter-

vention. The most common cause of non-termination errors

is when the program runs into an infinite locp. Non-

termination can also occur if a set of concurrent programs

falls into a dead lock.

Infinite loops are detected by simply executing

each of the loops in a program. However, this strategy

may not guarantee total absence of infinite loops. Some

infinite loops may only occur if certain program variables

achieve certain values. Program proving may also be used

on certain programs to expose infinite loops. The oroblemI

of program non-termination in general is still an unsolved

If problem.
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A.2.4 Specification Errors

Specification errors result whenever there exists a

discrepancy between the statement of specifications and

the statement of user requirements. A requirements error

exists whenever there is a discrepancy between the state-

ment of user requirements and the real user requirements.

Presently, detection of specification errors such as:

1. Incomplete specifications,

2. Inconsistent specifications, and

3. Ambiauous specifications,

remains an informal process. This is mainly due to the

nonexistence of a specification language powerful enough

to translate the user requirements into clear, complete

and consistent terms.

A testing tool to detect specification errors is

yet to be developed.

A.2.5 Performance Errors

Performance errors exist whenever a discrepancy

exists between the actual performance (efficiency) of the

programs and its desired or specified performance. Program

performance may be measured in a number of ways:

1. Response time

2. Elapsed time

3. Memory space usaqe

4. Working set requirement, etc.
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The actual measurement of the above measures of

program performance can be a very difficult process.

Program comnlexitv theory tries to estimate bounds on

the running time of certain prortram alqorithms. Statis-

tical analysis and simulation can also be employed to

estimate the above performance variables. However, use

of these tools can be very expensive and time consuming.

A performance testing tool that is economical (time-

wise and costwise) to use is yet to be developed.

The most expensive kind of software errors to elimi-

nate are those which are not discovered until late in the

software development, such as when the software becomes

operational. These are known as persistent software errors.

Glass [GLA81] reported that persistent software errors are

mostly due to the failure of the problem solution (i.e. the

l proaram) to match the complexity of the problem to be

solved (i.e. the user requirements). Examples of such

errors are computational errors due to missing or insufjfi-

cient predicates and failure to reset a variable to some

baseline value after its use in a functional logic segment.

The solutioa to this software problem is beyond the current

state-of-the-art.
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Appendix B

BASIC RELIABILITY CONCEPTS

In this appendix we present some of the basic concepts

from reliability theory that are useful in understanding

the software reliability models. For a detailed discus-

sion of this material, the reader should refer to a standard

book such as Barlow and Proschan [BAR75] or Mann et al [MAN74].

In the following we will use the random variable X

to denote the time to failure and x to denote a realiza-

tion of X.

Cumulative Distribution Function (cdf)

The cdf of a random variable X is denoted by F(x) and

represents the probability of X being less than or equal to

x, i.e.,

F(x) = P(X < x)

Probability Density Function (pdf)

The pdf of X is denoted by f(x) and is defined as

follows:
d

f(x) 3- F(x)

Reliability

The term reliability refers to the probability of4 failure free operation. Specifically, reliability R(x)

is defined as follows

B-1
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R(x) = P(no failure by x)

or R(x) = P(X > x)

This is an important and commaily used measure of a

software system.

Hazard Function or Failure Rate

This is a very fundamental term in software (or hard-

ware) reliability modelling work. The hazard function is

defined as
f (x)

z(x) 1 - F(x)

It is a measure of the instantaneous speed of failure.

Reliability in Terms of Hazard Function

Given the hazard function, the software reliability

can be computed from the following relationship.

-f z(u)du
R(x) = e

"/0

(Mean Time to Failure (MTTF)

This measure represents the expected value of the

time to next failure and is a very commonly used measure

of software quality. It can be computed by any of the

following formulae

MTTF = xf(x)dx

0

i MTTF = R(x)dx

0
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Appendix C

DETATILS 01: TI BFHTWFEN FAILURES (TBF) MODELS

This appendix contains theoretical and computational

details of most of the TBF models discussed in Section 3.

The following information is provided for each model:

*Model Assumptions

R asic Formulae

*Parametric Estimation

*Performance Measures

*Data Requirements

*Model Applicability

*Relev~ant References
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C-I Jelinski and Moranda De-eutrophication Model (Model TBFI)

1. Assumptions

a. Initial fault content

. An unknown fixed constant N

b. Independence of faults

Each fault in the program is independent of other

faults and each of them is equally likely to cause

a failure during testing. Times between occurrences

of faults are independent of each other.

c. Fault removal process

A detected fault is removed with certainty at the

end of each testing interval

Only one fault is removed during each testing interval

The fault removal time is negligible

No new faults are introduced during the fault removal

process.

d. Hazard function

* The software failure rate of the hazard function

during a failure interval is constant and is pro-

~portional to the current fault content of the

tested program. Thus, during the ith testing

. interval,

~~~~~z(ti) = N i l }

where 0 is a oroportionalitv constant, and N is

the initial number of faults in the program.
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2. Basic Formulae

The time between the (i-l)st and the ith failures Ti,

is distributed exponentially with parameter [N - (i-l)].

pdf of Ti f(t i) = - (i-l)]exp[-4{N- (i-l'}ti]

cdf of T. F(ti) = 1 - exp[-O{N- (i-l)ti}i

Plots of pdf and cdf for N = 100 and i = .01 are shown if

Figure D-1.

3. Estimation of Parameters and Related Results

A series of n failures is observed with interfailure

times as tl,t 2,...,t n. Usually, the method of maximum like-

lihood is used to estimate the parameters N and t as shown

be low.

The likelihood function of N and 0 is

n
L(Npj, .. = 7 [N- (i-l)]exp[-{i{N-(i-l)}ti]

2 ,  . ,tn )  i=1

The maximum likelihood estimates (mle's) of N and @ are

obtained by solving the following pair of equations simultaneous-

ly.
n nr 1

i i=l

and

nZ [N-(i-1)]t i =0

The above two equations yield

n I nE ~ N-(i-1)1 n

N- 1 Z (i-l)tii i=l
~n

where T E t.
i=l
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We can solve the above equation numerically to find N and

then obtain ¢ from the following equation

n n

NT- (i-1)t.

Using the asymptotic Droperties of the maximum like-

lihood estimators, it can be shown that

n 1
Var(N) det A

1 2 1
Var() = (N-)i+ det A

Cov(N,$) = Tdet A

where

n n 1 2 2det A T n zC_-yy
2

and
n 1

i=1 (N-i+l)

4. Performance Measures

* Reliability at time t after the nth failure is

R n(t) E P(Tn+ 1 > t) = exp[-O {N-n}t]

* Mean Time to Failure (MTTF) after n failures is

MTTFn =Rn (t)dt = N-n

I Plots of Rs0 (t) and of TATTF after 1,2,.,,,2S failures are

shown in Figure C-2.
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Using the variance-covariance of N, 4 , it can be shown that

= e-2 l4(N- n)t {nt2_2(Nn)Tt2 +(N-n) 2 t 2z
Variance(Rn(t)) det A t

Variance (MTTFn det A 2 V - 2TvV 2 + v2Z2 ]'

where
1

= (N-n) 2

1

V 2  2 and
(N-n)'

E2 and det A are as defined before.

All the above quantities can be computed by replacing

N and by N and ' , respectively.

5. Data Requirements

Data on times between failures, t,t 2,... ,tn are required

to estimate the parameters N and 4 (see #3 above).

r 6. Model Applicability

If the underlying assumptions are satisfied, this model

can be employed during the system integration testing phase.

7. Relevant References

LJEL72JWas the original paper in which this model was in-

troduced. Further discussion and some additional details are in

[MOR75, MORSl]. Computations of various relevant quantities and

appropriate confidence bounds are discussed in[GOE79a,GOE80].
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C-2. Schick-Wolverton Linear Model (Model TBF2)

1. Assumptions

a. Initial fault content

. An unknown fixed constant N

b. Independence of faults

* Each fault in the program is independent of other

faults and each of them is equally likely to cause

a failure during testing. Times between occurrences

of faults are independent of each other.

c. Fault removal process

A detected fault is removed with certainty at

the end of the debugging interval

Only one fault is removed during each testing interval

The fault removal time is negligible

No new faults are introduced during the fault

removal process

• d. Hazard function

* The software failure rate or the hazard function,

at any time is proportional to the current fault

content of the program and to the time elapsed

since the last failure. Thus, the hazard function

between the (i-l)st and the ith failures is given

by
z(ti) = [N -(i-l)]t i

where 0 is a proportionality constant, N is the

initial fault content, and ti is the test time since

4 since the (i-l)st failure.

C-8



2. Basic Formulae

The time between the (i-l)st and the ith failures T.

has a PRayleigh distribution with scale parameter equal to

{ {N - (i-l)}/2}1 1  Note that Rayleigh is a special of

the Weibull distribution with shape parameter equal to 2.

pdf of T: f(t.) = 44N- (i-l)]t exp[-OfN- (i-1)]t2 1

t.

cdf of T. F(t) = I1- exp[-(-4N - (i-i) ] f t dt]

= 1I- exp[-O[N - (i-l)1t 2 1

Thepdfof achfailure interval is a different Rayleigh

distribution and each is an Increasing Failure Rate (IFR)

distribution [BAR75,GOE8O]. Plots of Ddf and cdf for

N = 150, 0 = .02 are shown in Figure C-3.

3. Estimation of Parameters

A series of n failures is observed with interfailure

times as tilt 2 ". *t n' Usually the method of maximum like-

lihood is used to estimate the parameters N and 2 as shown

below.

The likelihood function of N and isI 2
L(N,1, Itilt ..*tn T I 0 [N-Ci-l))t. exp[- fN-(i-l)]t /2]

The maximum likelihood estimates of parameters N and 0

are obtained by solving the following pair of equations simul-

taneously.

2n- n 2E (N-(i-l))t. = 0

and

11n n
i~l-~ ~lt 2 =0

N-(i-1) i
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The above two equations yield

n i=l
N~ N- 2 E(i-l) 2

i=l1 i =l

We can solve the above equation numerically to findN

and then obtain from the following equation

=2n 2n

n2 n 2 n2
E~ 1 N~ E 1 i 1l )

4. Performance Measures

Reliability at time t after the nth failure is

R (t) -= P(T >t) = exp[- {N-n}n n+1l

Mean Time to Failure (MTTF) after n failures is

MTn = R(t)dt =fexp(-4 {N-n} -- ]dt

or MTTF~ 1 1/2

are shown in Figure C-4.
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5. Data Requirements

Data on times between failures t ,t2,...,t n are required

to estimate the parameters N and 2 (see #4 above).

6. Model Applicability

Here times between failures are assumed to follow IFR dis-

tributions and hence this model should be used only when the

testing strategy justifies such increasing fault detection rate.

7. Relevant References

The model was first proposed by Schick and Wolverton [SCH72].

A comparative study with other models was reported in [SCH78];

however, some of the material in that paper could be misinter-

preted as pointed out in [GOESO].

I

I

C-13



C-3. Geometric De-eutrophication Model (Model TBF4)

1. Assumptions

a. Initial fault content:

. No specific value needs to be assumed

b. Independence of fault:

Fatal faults are independent of each other and each

of them is equally likely to cause a failure during

testing. Times between failures are independent of

each other.

c. Fault removal process:

Testing is carried out until a fatal fault occurs

and then the accumulated group of faults is re-

moved along with the fatal fault.

A fatal fault (possibly with other non-fatal

faults) is removed with certainty at the end

of each testing interval

* The fault removal time is negligible

• No new faults are introduced during the fault

removal process

d. Hazard function:

The software failure rate or the hazard function

during a testing interval is a constant but

i 'changes values at occurrences of failures. For

the ith such interval, the hazard function is

given by

z(ti) = Dkil

ii }where D is the fault detection rate during the

first interval and k is a constant, 0 < k < 1.

C-14
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2. Basic Formulae

Time between the (i-l)st and ith failures, Ti, is dis-

tributed exponentially with parameter Dk
i '1

pdf of Ti: f(ti) Dki'I exp[-Dkii ti

cdf of Ti: F(t i) = I - exp[-DkiI t.i

Plots of pdf and cdf for D = 0.5, k = 0.95 are shown in Figure D-3.

3. Estimation of Parameters and Related Results

A series of n failures is observed with interfailure

times as t 1 t2 "... tn . Usually the method of maximum likelihood

is used to estimate the parameter D and k as shown below.

The likelihood function of Dk is
n

L(D,kjtl~t 2,...,t n ) = Dki-exp[-Dki-ti

i=l

The maximum likelihood estimators of parameters D and K can

be obtained by solving the following pair of equations simul-

taneously.

n il

j j=1

and

n n i-2E (i-l)-D E (i-l)k -2t. = 0

k i=l i=l

The above two equations yield
E ik It i n+l

Eik t .Zklti 2

from which we can find k by solving the equation numerically,

and then D from the following equation

A nl
n 

.n -itiI
E k

i=l
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Using the asymptotic properties of the maximur. likelihood

estimators, it can be shown that

Var() = 
2 2(2n-1)

Var( = Dn (n+l)

Var(i) = k2 12
n(n 2-1)

6
Cov(D,k) -D = nl

pbk= -/3 (n-i)l-
S(2n-1)

4. Performance Measures

* Reliability at time t after the nth failure is

R n(t) =-P(T n > t) = expll-Dk nt,

* Mean Time to Failure (MTTF) after n failures is

MTTF n=fR n(t) n
0 Dk

Plots of R 25 (t) and MTTF after 1,2, 111,20 failures are

shown in Figure D-3.f Using the variance-covariance of D,~it can ce shown

that

Var(,ITTF 2 (2 2___3n__7)_
n .2n -7 2 .n7
n n(n - 1)k D~

C-16
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5. Data Requirements

Data on times between fatal failures tlt 2 f,...,tn are

required to estimate the parameters D and k (see #4 above).

6, Model Applicability

This model can be used when testing continues until the

occurrence of a fatal fault at which time the fatal and the

non-fatal faults are removed.

7. Relevant references

The model was p-oposed by Moranda in [MOR75]. This model

was used to analyze some failure data and to compare the

results with some other models in (SUK76].
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Appendix D

DETAILS OF FAILURE COUNT MODELS

In this appendix we present detailed technical material

about the failure count models of Section 4. The follcwing

.models are discussed:

D-. Goel-Okumoto Non-Homogeneous Poisson Process Model

(Model FCl)

D-2 Goel Modified Non-Homogeneous Poisson Process Model
(Model FC3)

D-3 Musa Executi,?n Time Model
(Model FC4)

D-4 Shooman MTodel (Model FC5)

D-5 Geometric Poisson Model (Mode] FC6)

/ D-6 Modified Jelinski-Moranda Model FC7)

D-7 Modified Geometric De-Eutrophication Model
(Model FC8)

D-8 Modified Schick-Wolverton Model (Model FC9)

D-9 Generalized Poisson Model (Model FC0)

D-10 IBM Binomial Model (Model FC1l)

D-11 IDB! Poisson Model (Model FCl2)
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D-1 Goel-Okumoto Non-Homogeneous Poisson Process Model

(Model FCI)

1. Assumptions

a. Initial fault content:

Expected number of software faults to be eventually

detected is an unknown fixed quantity

Actual number of faults to be observed is a

random variable

b. Independence of faults:

Each failure is caused by one fault and each of

them is equally likely to cause a failure during

testing.

Number of software faults detected during non-

overlapping testing intervals is independent of

each other

c. Fault removal process:

Fault removal time is negligible

No new faults are introduced during the fault

removal process.

d. Intensity function:

Expected number of software faults detected

during (t,t+ At) is proportional to the expected

number of software faults undetected by time t,

i.e.

m(t+At) m(t) = b{a m(t)}At

where

D-2
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m(t) = expected number of software faults detected

by time t,

a = expected number of software faults to be

eventually detected,

b = constant of proportionality.

The intensity function or the fault-detection rate

X(t) is a decreasing function of t and is given by

(t) E m'(t) = b{a - m(t)} = abe -bt

where a,b, and m(t) are as defined above.

2. Basic Formulae

Expected number of software faults detected by time t

is given by
-bt

m(t) = a(l - e )

where a and b are as defined above.

The total number of software faults detected by time t,

N(t), under the above assumptions is an NHPP with mean value

function m(t) and intensity function X(t) as given above.

The distribution of N(t), hence, is given by

t y} {m (t)
}y  -m(t)Pf~ ) l y! e , y = 0,1,2, ...

and

E[N(t)] = m(t) = a(l- e-bt)

3. Estimation of Parameters

Suppose ylY 2,... , yn are the cumulative number of

software faults detected by times tl,t,,..., tn, respectively.
*$ 1

Then the likelihood function for (a,b) given the data pairs

D-3



{(y. ,t.), i = 1,2,... ,n} is

L(a,b IyIY 2,. ... Iyn~t,t ~2 ,* "tQ n)

II e

~ t ( i -e

MLE of parameters a and b can be obtained by solving the

following pair of equations simultaneously

-bt
a(l - e n)= n

and -bt

e -e

The above two equations yield

* bt -bt.-b

from which we can find Gnumerically and hence

a yn
-bt

(le n)

4. Performance Measures

~' . Expected number of software faults detected by

W I time t is given by

D-4



Expected number of remaining faults in the s/w

system at time t is given by

E(N(t)1 = ae -St

where N(t) number of faults remaining in the system

at time t.

Software reliability

Let Xk be the time between failures (k-I) and k

and Sk be the time to k failures. Then it can be shown that

the conditional reliability function of Xk, given Sk_ 1 =s,

is

RXkISk I ( x1 s ) = exp[tgVebS - e-(sx)}]

S. Data Requirements

jl The data needed are lengths of testing intervals and

number of failures in each interval. Before fitting the model,

however, all data should be normalized to equal test intervals.

6. Model Applicability

- Model can be used in a fairly general testing environ-

ment (see explanation of assumptions in Section 6.1).

7. Relevant References

The model was proposed in [GOE79a]. Detailed data

analyses based on this model are given in [GOE82].
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D-2. Goel Modified Non-Homogeneous Poisson Process

Model (Model FC3)

1. Assumptions

a. Initial fault content:

Expected number of software faults to be detected

eventually is an unknown fixed quantity.

Actual number of faults to be detected is a

random variable.

b. Independence of faults:

Each failure is caused bS one fault and each of

them is equally likely to occur

Number of software faults detected during non-

overlapping testing intervals is independent

of others

c. Fault removal process:

Fault removal time is negligible

. No new faults are introduced during the fault

removal process

d. Intensity function:

Expected number of software faults detected during

(t,t+At) is given by

m(t+At) - m(t) = bctc'l {a -m(t)}At

where m(t) = expected number of software faults

detected by time t,

a = expected number of software faults

to be eventually detected

bc = constants.

D-6
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The intensity function or the fault detection

rate X(t) is a function of time and is given by

(t) =_ m'(t) = abct c - e- b t c

where a,b,c, and m(t) are as defined above.

2. Basic Formulae

Expected number of software faults detected by time t

is given by
bt )

m(t) = a(l - e

where a,b, and c are as defined above.

The total number of software faults detected by time

t, N(t), under the above assumptions is a NHPP with mean value

function m(t) and intensity function X(t) as given above.

The distribution of N(t), hence, is given by

P(N(t) = y} - {m(t)Y e t) y

and

E[N(t)] = m(t) = a(l -e btc

3. Estimation of Parameters

Suppose yly 2 ,...,yn are the cumulative number of soft-

ware faults detected by times tlt 2 ,.. .,t , respectively.

Then likelihood function for (a,b,c), given the data pairs

(yi,ti), i 1,2,...,n is

L(a,b,cl'yly2,...,ynP t 2,...,tn) =

Pr{N(tl) Yl'N(t 2 ) y Y 2,'''N(tn) = Yn }

D-7
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n [m(ti) -m(t i)] y i -{m(ti)-m(ti_l))
C - ei l 1 yi " Yk- 1) !

-bt c  -btc yi-Yi-l -bt c
n {a(e - e ) a(l-e n)
TI

i=l

MLE of parameters a,b, and c can be obtained by solving

the following non-linear simultaneous equations:

b tc

Yn = a(l -e n

-bt c  - bt c

btc  n (Yi - Yi_1)(tce I _tc 1e  i-1

at c e n1 _l -- ) I

i=l -btiI -bt i(e -e

and c

atC (kn tn )e 
bn

n- bt~c  -bt~c

n (yi-yi 1 ) {tc(Znti)e - tC_ (knti.)e 1-1

i=1 C-bt -bt)
(e -e )

The set of simultaneous equations can be solved numerically

for a,b, and c. The solution will be the required maximum

likelihood estimates a, b, and c of a, b, and c, respectively.

4. Performance Measures

Expected number of software faults detected by time t

is given by
a( C_ St c

ne(t) -- a(1 e - )

Expected number of remaining faults in the software

isystem at time t is given by V^t

l E[R (t) ] =  e tb

t D-8



where N(t) = number of faults remaining in the siw

system at time t.

Software reliability

Let Xk be the time between failures (k-1) and k and

Sk be the time to k failures. Then the conditional relia-

bility function of Xk, given by Sk 1 = s, is

R Xk!Sk~l (x =s )  exp[-a{ebsc eb(s+x)c]

A

1

: i D-9



D-3. Musa Execution Time Model (Model FC4)

1. Assumptions

a. Initial Fault Content:

The number of faults in the program (existing

before the test phase) is an unknown fixed

quantity N.

b. Indeoendence of the Faults:

Faults in the program are independent of each

other and each fault has a constant average occur-

rence rate. Failure intervals are independent

of each other.

c. Testing Environment:

Test space for the program covers the use space.

The set of inputs for each run of the program,

whether during a test or onerationa] phase, is

selected randomly.

j Jd. Fault Removal Process;

{ . New faults can be introduced during the correc-

tion process.

, IMore than one fault can be corrected during each

correction time.

Time to correct faults is negligible.

e. Hazard Function:

. Execution times between failures are piecewise

exponentially distributed.
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Hazard rate is proportional to the expected

value of the number of faults remaining, i.e.,

Z(T) = Kf(N - n0 )

where, Z = hazard function

T= execution time utilized in executing

program up to the present

N = initial fault content (existing before

the test phase)

nc  number of faults corrected

f = linear execution frequency (average

instruction execution rate divided

by number of instructions in the

program)

K = proportionality constant, which is

an fault exposure ratio which relates

fault exposure frequency to linear

execution frequency.

2. Basic Formulae

dnc
1. Fault correction rate: -aT-= BCZ(T)

where, B average ratio of the rate of reduction of

faults to the rate of failure occurrence

(fault reduction factor).

C = average ratio of rate of detection of

failures during test to that during use

(testing compression factor).

D-11
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n
2. m - expected number of failures experienced in correctinq

n faults

3. M =  = expected total number of failures required to

expose and remove the N inherent faults

dm
4. T7 + BCfKm = BCfKM

5. m = M[l - exp[-c'/MT0 ]

where To = initial MTTF before testing.

6. nc = N(I - exp[-c=/MT0]]

.. Estimation of Parameters:

Likelihood Function

n
LCTit T ..... T ) =- 7 -a. [ 1- . Cexp[- i (I .)]

n i=lIT 0 01

MLE of parameters T0 and M can be obtained from the followin=

pair of equations
~m m c m i -

- 1-- = 0IM i-

and 0 TO i=l

m m7 1 c ? . = 0
M- (i-l) MTo.
i~l 0 i=l

". Performance Measures:

Reliability: R(t) = exo(- f)

where T = MTTF = T0 exp(c-/MT0 )

D-12
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D-4. Shooman Exponential Model (Model FCS)

1. Assumptions

a. Initial Fault Content:

An unknown fixed constant N

b. Independence of faults

Each error in the program is independent of other

errors and each of them is equally likely to occur.

c. Fault Removal Process:

A detected error is corrected with certainty.

No new errors are introduced during debugging

, Correction time of an error is negligible.

d. Hazard Function

Error occurrence rate or correction rate is

proportional to the number of remaining errors

n r ), i.e.
r

"(t) = Kn (7)

N _
SK(T nc(T)l

where, I = total number of instructions in

the program

r = debugaing time since start of

system integration

n (7) = total number of faults corrected

during debugginq interval T,

normalized with respect to I.

K = prorortionality constant

t = operatinq time of the system

measured from its initial activation.

D-13
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7. Basic Formulae:

Probability that a s/w failure will occur in time interval

(t, t+At) after t hours of successful operation is proportional

to the failure rate (hazard function) Z(t), i.e.
Pr{t< tf < t + At~tf> t} Z(t)At = Knr ()At

where tf = operating time to failure

3. Estimation of Parameters:

Parameters N and K can be estimated by runnina a functional

test after two different debugging times, T 1 < T2 chosen so

that nc (r < nc(2. Then

MTTF 1  n s H(T

and

MTTF - - [ ] [K N H-1F2 Ns2 2  1 c 2

where, l = software failure rate

H total number of run hours (successful).

From the above two equations we get

N T _ [(Xs2/Asl ) n c ( 1T  - nc(T2)]
(s2/ sl) -

and hence

K = sl /[(N/I) n nc(T I ]

D-14
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4*Performance Measures:

Reliability: R(t) = exp[-Z(t)tl

= expt-K[! - n (T)1t]

MTTF: MTTF = ~)- f

D- 15



D-S. Geometric Poisson Model (Model FC61

1. Assumptions

a. Initial Fault Content:

No specific value needs to be assumed

b. Independence of the Faults

Each fault in the s/w is independent of others

and each of them is equally likely to occur.

c. Error Removal Process:

Number of faults detected in any debugging interval

(fixed) are removed with certainty at the end of

the debugging interval.

No new fault is introduced during the correc-

tion time.

Time to correct the detected faults is negligible.

d. Hazard Function:

* Debugging intervals are fixed.

The number of faults occurring in the i-th interval

is governed by a Poisson distribution with

parameter XK i.e.

Z(t i) = AK

where,

= average number of faults occurring

in the first interval

K = a positive number less than I.

D- 16
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2. Basic Formulae:

The distribution of the number of faults .i, detected

during ith debuqqing interval is Poisson with parameter

i.e.,

n.

E(N Ki--

Prt' *()Ki-l) 1 exp[_\K-]
1rN 1 n i }

I ~E [Ni] =\K I

S. Estimation of Parameters

Likelihood Function:

L(nl,n 2 , ....r nm M pr,.N1I =n,,N 2  n n2 ".... Nm  n m

' Ki-l) exp[-\ ]
i=l ni"

Maximum likelihood estimators of parameters ", and K can be

obtained by solving the following pair of equations simnultaneousiy

1m m-i i
1 7 n.- 7 K= 0

M 1 -1
i--i i ri--0 l~

' iKI  ini

i=O i0 i

These two equations yield

m

m n.(1 -. K ) (I - K) i=l

K + (m-l)Km+l - mK - in

from which we can find K and hence

r , m- ini+

i=O
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4. Performance Measures:

After the ith debugging interval the failure rate is

XK , therefore
i

Reliability: R(t) =Prtno failures in (Y tm MY t m+tfl

-AK t

MTTF after i-th debugging interval =JR(t) dt

0

1

x K

D- 18

Mak



D-6. Modified Jelinski-Moranda fModel (Model FC7)

1. Assumptions

a. Initial fault content:

. An unknown fixed quantity N

b. Independence of faults:

Each fault in the program is independent of other

faults and each of them is equally likely to

cause a failure during testing.

i Number of faults discovered in any testing interval

is independent of that in any other intervals.

c. Fault removal process:

I All detected faults are removed with certainty

at the end of each testing interval

Fault removal time is negligible

* No new faults are introduced daring the fault

removal process.

d. Hazard function

The fault occurrence rate or the hazard function

during a testing interval is proportional to the

number of remaining faults at the beginning of

this interval and for the ith testing interval

is given by

Z(ti) = [N - Mi_1 ]

where

M. N total number of faults removed3 i=l1
up to the end of the jth

testing interval.
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ti = ith testing interval

0= proportionality constant

2. Basic Formulae

Number of faults, Ni. detected during the ith testing

interval t. has a Poisson distribution with rate [N - M~

1 ~{4(N-M )ti} 1 e(N lt
Pr{N . n.} 

n

*and EENI = 4(N- M -)t.

3. Estimation of Parameters

Likelihood Function 
=n

L(niin 2 "...,n m) Pr{Nl= nlN 2 = 2" N nm

m ((N -M- 1)t1 1}
TI expI-0 (N- M.1) t]

i=11

MLE of parameters N, can be obtained by solving the following

pair of equations simultaneously

rn n. m

i-i 1
and

m m

ni (Nf -1)

The above pair of equations yield
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m m

m( ni) ti

NN -

i=l

from which we can find N and thereforem
nii=l

M
(N - M )t

4. Performance Measures:

After the i-th debugging interval the failure rate

is N -NM .

Therefore
i i

Reliability: R(t) = Pr{no failure in ( tm, I tm+t]}
m=1 m=l

-O N-M i ) t
II

MTTF after i-th debugging interval

01
R(t)dt = ¢[NMi ]

0

I D-2l
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D-7 Modified Geometric De-Eutrophication Model (Model FC8)

1. Assumptions

a. Initial Fault Content:

. No specific value needs to be assumed

b. Independence of faults:

Each fault in the program is independent of other

faults and each of them is equally likely to

cause a failure during testing.

Number of faults discovered in any testing interval

is independent of that in any other intervals.

c. Fault removal process:

All detected faults are removed with certainty at

the end of each testing interval.

Fault removal time is negligible

No new faults are introduced during the fault

removal process.

d. Hazard function

The fault occurrence rate or the hazard function

K! during a testing interval is constant but the

value changes at the beginning of the next testing

interval. For the ith testing interval, ti, the

hazard function is given byM.

Z(ti) = DK- 1

: Iwhere, D = fault detection rate during the first

testing interval t

K = a positive constant less than 1

D2
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M cumulative number of faults detected

up to the end of (i-l)st testing interval,

2. Basic Formulae

Number of faults N.i detected in the ith testing interval
1l

t.i has a Poisson distribution with rate DK ii.e.

M. n Nj..i.1

PrN n (DK t.i) eXPI-DK t.]r

1 1 n.!

and M
E[N .) DK 1-t

3. Estimation of Parameters:

Likelihood function:

L(nlmn 2 F...'nm) P r {N =nN 2 =n 2 1 ... ,NM n MI

m (DK t;) expi-DK t.]
-TI

MLE of parameters D and K can be obtained by solving the

following pair of equations simultaneously

n K t. Mi- 0

and
m m M. -

n~ i l i-l 1

The above two equations yield

mn.
mf m M -

i i~l 1I K it
K t
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from which we can find K and hence

m
Sni

Performance Measures:

After i-th debugging interval the failure rate is
M.

DK'1

i i
R(t) =Pr{No failures in ( ti, t t+ t]}

M.
e-DK1

MTTF =f R(t) dt 1=Mean time to failure after i-thM.
0 DK debugging interval.
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D-8 Modified Schick-Wolverton Model (Model FC9)

1. Assumptions

a. Initial fault content:

An unknown fixed quantity N

b. Independence of faults:

Each fault in the program is independent of

other faults and each of them is equally likely

to cause a failure during testing.

Number of faults discovered in any testing interval

is independent of that in any other intervals.

c. Fault removal process:

All detected faults are removed with certainty at

the end of each testing interval.

Fault removal tine is negligible

No new faults are introduced during the fault

removal process.

- d. Hazard function

The fault occurrence rate or the hazard function:1 during a testing interval is proportional to the

number of remaining faults at the beginning of

this interval and to the total time previously

spent in testing (including an "avereged" error

search time during the current testing interval).

Specifically, the hazard function during the ith

testing interval is given by

)D-25
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z(t i ) = O[N-M [T + t./2]

where M. = N. = total number of faults

removed up to the end of

the j-th interval

t. = i-th debugging interval1

Ti 1 = cumulative test time throuqh (i-l)thiii-i

interval= [ t; To = 0
j=l

= proportionality constant.

2. Basic Formulae

Number of faults N. detected in the i-th testing inter-

val of length ti has a Poisson distribution with rate

t.

[iN- M ][T + 11 i.e.
2 t. n t

{f[N-Mi '] ft + I]t 'exp[-O(N-MiT) +Tl+ )t I

Pr{N =n n.

and

E[N i] [N - ] [T + It1 *i-l i-i i

3. Estimation of Parameters

The number of faults detected in each test interval

is observed. Supnose the number observed during m such

intervals t1 ,t2 , ... ,t are n,, n,, and n , respectively.

Then the likelihood of observing nI faults in the first interval,

interval, n, in the second and so on, is given by

lD-26
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L(nl,nt .... n /tl,t, ... , ) P N n = lnN = n1 r 12 '' m

St. n. t.
m { [N-M i  ] J[Ti- l tI lexp[-)N-M ) (Ti-I. + )t

i~ n

MLE of parameters N and ¢ can be obtained by solvinq the

following pair of equations simultaneously

1m m
i1 n. -i1 (N-Mi1 ) (Ti- + t/2)ti = 0

and

m m
n 1 ~ (Ti I + ti/2)t. 0

N -M i i

The above two equations yield

T11 m t.
7 n.( [ (T i + T) t

P il i=l 0

iIl (N- M ) (T + ti/2)t'

from which we can find N. Therefore

V n.
j 1 P

i-l

m(Ti 1  - ti /2)t i

4. Performance Measures:

After (i-l)th debugainq interval the Failure rate is

t [N - Mi1 l [Ti 1 + ti/21 , therefore

1)- 27
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i-i i-I
Reliability R(t) - Pr{no failure during ( t t m + t)}

m-1 rn1
t_, i~ I  (ti-+ti/2)ati

-$[N-M i_1 I] T [i-l + t /41t

exp{-'N -M I[T + ]t}

i-i i- 1 +1t

MTTF after (i-l)th debugging interval = R(t)dt.

0

S. Data Requirements

Data on testing interval lengths tlt 2 , ...,tm and

the corresponding number of failures nl,n 2, ...,nm are

needed to estimate the parameters N and 0.

6. Model Applicability

This model could be used when the testing effort

is constant during a given testing interval and if the

underlying assumptions are satisfied.

7. Relevant References

The model was suggested in Lipon [LIP74] and used

to analyze some failure data by Sukert [SUK76]. Also,

the performsnce of this model was compared in [SUK76]
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D-9. Generalized Poisson Model (Model FCl0)

1. Assumptions

a. InitialFault Content:

An unknown fixed quantity N

b. Independence of Faults

Each fault in the program is independent of the

other faults and each of them is equally likely to

occur. Number of faults discovered in a testing

interval is independent of the number in another

interval.I c. Error Removal Process:

When faults are removed they are removed with

certainty at the ends of the debugging intervals.

No new faults are introduced during the correction

time.

Time to correct faults is negligible.

d. Hazard Function:

The number of faults Ni detected in the ith testing

interval has a Poisson distribution with mean value

function

m(ti.} E[N i] = 4[N- Mi.t i ,

where,
Mj N total number of faults removed

i=l up to the end of the j-th
debugging interval.

ti = i-th debugging interval

= constant of proportionality

a - constant
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i.e.

Z(t i } = [N - ti

2. Basic Formulae:

Number of faults detected, N., in the i-th debugging1

interval ti has a Poisson distribution, i.e.

{ {(N-M ) t
n i exp[-i(N-M )t

Pr{N i n i} = nnt

and

E[Ni] F m(ti) =O(N-Mi-I ) t

3. Estimation of Parameters:

Likelihood Function

L(nl,n 2,... ,nm) = Pr{N1 = n ,N2 = 2' N m =n

ni
m {((N-M_ Ut.} 1

= iH ni exp[-4(N-M i-l)ti]
i=1 . -

MLE of parameters N, * and a can be obtained from the following
set of three equations

M nt =

i - i-i i1 1

-(N - M _ 1) 2

and
m m

niEnti-* (N-Mi l)t'int 0

i-ii 3
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D-1O. IBM Binomial Model (Model FCll)

1. Assumptions

a. Initial fault content:

The number of faults in the software system

(existing before the test phase) is an unknown

fixed quantity N.

b. Independence of faults:

Each failure of the software is caused by one

fault and each of them is equally likely to cause

a failure during a specified unit interval of

testing.

• Probability of detecting any one fault during a

specified unit interval of testing is constant

over all test occasions and independent of other

fault detections.

c. Fault removal process:

Fault removal time is negligible

• New faults can be introduced during the fault

correction process.

Number of faults introduced on any test occasion

is proportional to the number of faults detected.

d. Testing Process:

The testing phase of the software system (module)

is divided into a number of test occasions.

* Each test occasion of the software system (module)

is further divided into a number of unit intervals.
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2. Basic Formulae

a) Binomial module level model

The distribution of the number of faults detected

during the ith test occasion in module j follows a

binomial distribution with parameters Nij and qi i.e.

P~n = xij} qJ (1 - q.*) 13 13
3ij 13q

where Nij = expected number of faults remaining

in module j at the beginning of

test occasion i.

n.. number of faults detected in module

j uring test occasion i.

qij= fault detection probability for test

occasion i of module j.

Nij 3 N - i-l,j

1 where j- weight assigned to module j

(ratio of the size of module

j to that of the total system). If all

of the modules of the system are under

test on occasion i, thenIW

N = total number of faults in the system

at the beginning of the first test

occasion
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I

N. cumulative number of faults detected

in module j through test occasion i-1.

a probability of correcting faults without

introducing additional faults.

t.,
qij = [1 (1-q) tij]

where q = error detection probability during one unit

interval of testing

tij =total number of unit intervals.

E(ni . = Nij qij

b) Binomial system level model

The distribution of the number of faults detected

during the ith test occasion of the software system

follows a binomial distribution with parameters Ni and

qiq i.e.

N. X. N.i -x.
P{n. = xi} = • 1) qi1(1 - qi)

where N. expected number of faults remaining in the

1
system at the beginning of test occasion i.

ni = number of faults detected in the system

during test occasion i.

qi fault detection probability during ith test

occasion of the system.

N=  Ni =  (w.N- aN )
Jeji -e-li
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where J. = set of modules tested on occassion i.

t.
1q= i - (l-q)

where ti = t. = system test effort on occasion i
1 J (total number of unit test inter-

vals for all of the modules tested

on occasion i)

E[n] = liq i

3. Estimation of Parameters

a) Binomial module level model:

Suppose n1 1 ,n12, ... , nkj are the number of soft-

ware faults detected in J modules on k test occasions.

Then the likelihood function of N, q and a given the

II! actual number of observed faults ni. .15

L(N,q,alnij; i = 1,2, ... k; j = 1,2, ... , J)

Sk J NJ 1 -nijn N-n.j
HI~ 1 3)q-13 (l- q.

i-l j=l j

4 ,M.LE of parameters N, q and can be obtained by

solving the following three equations simultaneously.

m L _ k J N..aT L 0 1 1 [ wjkn -j + wjtijitn(lq) ]
i=l j-l Nij n nij 1
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atnL k J nijti ti i ]

aq (t. ij i
-'4-" o E I t ij

i,,1 j-1 I (I-q) i

a n Lk J IN .
=3n 0 1 Nijl N -ljtijtn(1-a)]-- ..- 0 - Z E Ni. 1 .Ln N

i-i j-1 ' ii fl ni  i l

b) Binomial system level model:

Supps n1 n2,.. are the numbers of software

faults detected in the software system on k test occasionsJ
(ni  nii). Then the likelihood function of N, a and

t, given the actual number o* observed faults ni,is

I L(N,q,alni; i - 1,2, .. ,k)

Sk N'! ni N -n.

( ) qi i(l qi) i i

MLE of parameters N, q and a can be obtained by

solving the following three equations simultaneously.

k .
nL k n + tikn(1-)1 w. - 0

i lN i -n neI

"nL k n " tJ

atn L k N.
13 (in + tin(q)] [ N. - 0

-il i . ni 1 iJEJ i 1,j
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4. Performance Measures:

Expected number of software faults detected during

test occasion i is given by

E[n. . = Ninqij  (module level model)

E[ni] = Niq i  (system level wodel)

Reliability

Suppose that we wish to evaluate the reliability

of the software system under test at the end of k test-

ing occasions. Let tk+ 1 be the time interval for the

next test occasion. Then the probability that no

fault will occur during the (k+l)st test occasion, i.e.,

the reliability, is given by

R(t+) = (1 - q)tkl kl )

S. Data Requirements

The data needed are the number of faults detected during

each test occasion (for the system level model) or the number

of faults detected during each test occasion in each module

under test (for the module level model).

6. Model Applicability

i This model can be used during unit testing, integration

testing and system testing, where the underlying assumptions

are satisfied.

7. Relevant References

The model and the detailed data analyses are given in

[BRO00.
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D-l1. IBM Poisson Model (Model FC12)

1. Assumptions

a. Initial fault content:

The number of faults in the software system (existing

before the test phase) is an unknown fixed quantity N.

b. Independence of faults:

Each failure of the software is caused by one fault

and each of them is equally likely to cause a failure
during a specified unit interval of testing.

Probability (proportionality factor 4) of detecting

any one fault during a soecified unit interval of

testing, is constant over all test occasions and

independent of other fault detections.

c. Fault removal process:

Fault removal time is negligible

New faults can be introduced during the fault

correction process.

Number of faults introduced on any test occasion

is proportional to the number of faults detected.

d. Testing process:

The testing phase of the software system (module)

is divided into a number of test occasions.

* Each test occasion of the software system (module)

is further divided into a number of unit intervals.
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2. Basic Formulae

a) Poisson module level model

The distribution of the number of faults detected

during the ith test occasion in module j follows a

Poisson distribution with parameter N ijij, i.e.

-N. .i x..e 13 i3( i ) * 1

Ptn ij xij} =
xij•

where Nij = expected number of faults remaining in

module j at the begi ing of the test

occasion i.

nij= number of faults de I in the module J

durinF test occasion i.

ij = fault detection rate of each fault in

the jth module on test occasion i.

t-
i = 1 - (1-¢) 13

where = fault detection rate of each fault

during a unit test interval.

t.. number of unit test intervals for module

jon test occasion i.

Enij1 = Nijij

b) Poisson system level model

The distribution of the number of faults detected

during the ith test occasion of the software system
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follows a Poisson distribution with parameter Niji
- -~ xi

(Ni~i)1P{n i = xi } =x

where, N i = expected number of faults remaining in

the system at the beginning of test

occasion i.

ni = number of faults detected in the system

during test occasion i.

= fault detection rate of each fault in1

the system during test occasion i

1i- 1- (i-€) i

where, ti = Z t4 j system test effort on occasion i.
jEJ i

Elni] = N i i

3. Estimation of Parameters

a) Poisson module level model:

SupDose nil, n 1 2, ... , nkJ are the number of

software faults detected in J modules on k test occasions.

Then the likelihood function of N, and given the actual

number of observed faults n. is

L(N,4 ,tj nij; i = 1,2, .. , k; j 1,2, ... J)

n. -N iji j
=k J (Nji ')

i=l j=l nij

MLE of parameters N, and a can be obtained by
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solving the following three equations simultaneously.

ain L= 0  k J W n..-Oj

i=l j~l ~N~

an L -0 k J n ..

i=l j=l 1 .
t . . nk. .n .

- F -- 1 1 Ni- f! ij
30Li=1 j=1l 1,j Nij i

b) Poisson system level model:

Suppose nl, n2, ... , nk are the numbers of soft-

ware faults detected in the software system on k test

occasions.

Then the likelihood function of N, and a given the

actual number of observed faults n. is
1

L(N, ,a I ni; i 1,2, ... , k)
n. -~~

k (N.0i) i e
7T n.] _
i=1 1*

MLE of the parameters N, Oand a can be obtained

by solving the following three equations simultaneously

k n.
akn L =0 ( [ w

i=l JeJ N.1 1
k t i  n i

~n L = 0 = ti(1-¢) [ ._D_40
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an L. k n.N

i-l jEJ. 1j
11

4. Performance Mleasures:

Expected number of software faults detected during

test occasion i is given by

E[nij] = N.ioJ. i (module level model)

E[n i ]  - Ni. (system level model)1 11

Reliability

Consider that at the end of K testing occasions

we wish to evaluate the reliability of the software

system under test. Let tK+1 be the time interval

for the next test occasion, then the probability

that no fault will occur during (K+l)th test occasion

is given by

RtK+1) = eNK+lK+l

where bK+ 1 = 1 K~l

5. Data Requirements

The data needed are the number of faults detected during

each test occasion (for the system level model) or the

number of faults detected during each test occasion in

each module under test (for the module level model).

D-41

moon-..



6. Model Applicability

This model can be used during unit testing, integration

testing and system testing, where the underlying assumptions

are satisfied.

7. Relevant References

The model and the detailed data analyses are given in

[BRO80].

I
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APPENDIX E

DETAILS OF COMBINATORIAL MODELS

In this appendix we provide details of the underlying

assumptions and other relevant concepts for the fault seeding

and input domain based models discussed in Section 5.

E.1 Mills' Hypergeometric Model (Model FSl)

Assumptions

. Faults are seeded at random. Each portion of the program

has the same probability of having a seeded fault.

Probability of detecting an indigenous fault is the same

as that of detecting a seeded fault.

Basic Formulae

Let

I n = number of seeded faults

xs = number of seeded faults detected during testing

nI f total number of indigenous faults

x, = number of indigenous faults detected during testing

Then the joint probability of finding xi indigenous faults

and xs seeded faults in n1 + n tests is given by the hyper-

tric distribution as follows n n

indigenous faults and . (xI

seeded faults in I s)

ni+n tests xI + Xs
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The maximum likelihood estimate of nI is given by

^ ns • x In *x

Lipow's Extension (LIP72]

The probability of finding xI indigeneous faults, x seeded

faults, and (therefore) N-xI-x s tests with no faults found in N

statistically independent tests is given by

nI n n

N X +X5  N-x -x S x I x s  nI Is( Nqi )N
PN(XI'x s;qnInS) = (x+x)q (-q) nI+ns i=O

The mle's of n1 and q are given by

x + x sI q-

' ~and ( x

n dX s n s i f X + x > 1

n 1 0 XI + x s  0

f ns  if xs = 0.

Basin's Extension [BAS74]

Basin suggested a method, the so-called two-state
edit procedure, where one programmer searches for faults and

records n1 faults out of a total of N unknown indigenous

favIts. A second programmer edits the program independently

to record r faults out of N (unknown) faults. The two

lists of faults are then compared. The probability of k
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faults in the second programmer being included in the

first programmer's list is also given by the hypergeometric

distribution, i.e.

n1  N-n1
k (klr-k

' qk (N) N
(r)

The mle of N is then given by

nlr

i
4
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Appendix F

SELECTED SOFTWARE ENGINEERINC TERMS*

Abort:
To terminate a process prior to completion.

Acceptance criteria:
The criteria a software product must meet to successfully complete
a test phase or meet delivery requirements.

Acceptance testing:
Formal testing conducted to determine whether a system satisfies its
acceptance criteria and to enable the customer to determine whether
to accept the system. See also qualification testing, system testing.

Accuracy:
(1) A quality of that which is free of error. (ISO)
(2) A qualitative assessment of freedom from error, a high

assessment corresponding to a small error. (ISO)
(3) A quantitative measure of the magnitude of error, preferably

expressed as a function of the relative error, a high value
of this measure corresponding to a small error. (ISO)

(4) A quantitative assessment of freedom from error.

Algorithm:
(1) A finite set of well-defined rules for the solution of a problem

in a finite number of steps, e.g., a complete specification of a
sequence of arithmetic operations for evaluating sin x to a
given precision. (ISO)

(2) A finite set of well-defined rules which gives a sequence of
operations for performing a specific task.

Analytical model:
A representation of a process or phenomenon by a set of solvable
equations. See also simulation.

Application software:
Software specifically produced for the functional use of a computer
system, e.g., software for navigation, gun fire control, payroll,
general ledger, etc. Contrast with system software.

Assignment statement:
An instruction used to express a sequence of operations, or used to
assign operands to specified variables, or symbols, or both. (ANSI)

Taken from "A Glossary of Software Engineering Terminology"(IEEE
Project 729), IEEE Inc., New York 10017.

SF-l K.



Automated design tool:
A software tool which aids in the synthesis, analysis, modeling, or
documentation of a software design. Examples include simulators,
analytic aids, design representation processors, and documentation
generators.

Automated test case ,.enerator:
See automated test generator.

Automated test data generator:
See automated test generator.

Automated test generator:
A Software tool that accepts as input a computer program and test
criteria, generates test input data that meet these criteria, and,
sometimes, determines the expected results.

Automated verification system:
A software tool that accepts as input a computer program and a repre-
sentation of its specificatiai, and produces, possibly with human help,
a correctness proof or disproof of the program. See also automated
verification tools.

Automated verification tools;

A class of software tools used to evaluate products of the software
development process. These tools aid in the verification of such
characteristics as correctness, completeness, consistency, traceability,
testability, and adherence to standards. Examples include design
analyzers, automated verification systems, static analyzers, dynamic
analyzers, and standards enforcers.

Availability:
(1) The probability that software will be able to perform its desig-

nated system function when required for use.
(2) The ratio of system up-time to the total operating time.
(3) The ability of an item to perform its designated function when

required for use. (ANSI/ASQC A3-1978)

Availability model:
A model used for predicting, estimating, or assessing availability.

Baseline:
(1) A specification or product that has been formally reviewed and

agreed upon, that thereafter serves as the basis for further
development, and that can be changed only through formal change
control procedures.

(2) A configuration identification document or a set of such documents
formally designated and fixed at a specific time during a Cl's life
cycle. Baselines, plus approved changes from those baselines, con-
stitute the current configuration identification. For configuration
management there are three baselines, as follows:
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a) Functional baseline. The initial approved functional
configuration.

b) Allocated baseline. The initial approved allocated configuration.
c) Product baseline. The initial approved or conditionally

approved product configuration identification. (DoD-STD 480A)

Bottom-up design;

The design of a system starting with the most basic or primitive
components and proceeding to higher level components that use the
lower level ones. Contrast with top-down design.

Bug:
See fault.

Bug seeding:
See fault seeding.

Build:

An operational version of a software product incorporating a specified
subset of the capabilities that the final product will include.

Certification:
(1) A written guarantee that a system or computer program complies

with its specified requirements.

(2) A written authorization which states that a computer system is
secure and is permitted to operate in a defined environment

with or producing sensitive information.
(3) The formal demonstration of system acceptability to obtain

authorization for its operational use.
(4) The process of confirming that a system, software subsystem, or

computer program is capable f satisfying its specified require-
ments in an operational environment. Certification usually takes
place in the field under actual conditions, and is utilized to
evaluate not only the software itself, but also the specifica-
tions to which the software was constructed. Certification extends
the process of verification and validation to an actual or simu-
lated operational environment.

(5) The procedure and action by a duly authorized body of determining,
verifying, and attesting in writing to the qualifications of
personnel, processes, procedures or items in accordance with
applicable requirements. (ANSI/ASQC A3-1978)

Chief programmer:
The leader of a chief programmer team; a senior-level programmer
whose responsibilities include producing key portions of the soft-
ware assigned to the team, coordinating the activities of the team,
reviewing the work of the other team members, and having an overall
technical understanding of the software being developed.
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Chief programmer team:
A software development group that consists of a chief programmer, a
backup programmer, a secretary/librarian and additicnal programmers
and specialists as needed and employs support procedures designed to
enhance group communication and make c9timum use of each member's skills.

Code:
(1) A set of unambiguous rules specifying the manner in which data may

be represented in a discrete form. (ISO)
(2) To represent data or a computer program in a symbolic form that

can be accepted by a processor. (ISO)
(3) To write a routine. (ANSI)
(4) Loosely, one or more computer programs, or part of a computer

program.
(5) The encryption of data for security purposes.

Code generator:
A program or program function, often part of a compiler, which transforms
a computer orogram from some intermediate level of representation (often
the output of a parser) into a lower level representation such as
assembly code or machine code.

Comment:
(1) Information embedded within a computer program, command language,

or set of data which is intended to provide clarification to human
readers and that does not effect machine interpretation.

(2) A description, reference, or explanation added to or interspersed
among the statements of the source language, that has no effect
in the target language. (ISO)

Complexity:
The degree of complication of a system or system component, determined
by such factors as the number and intricacy of interfaces, the number
and intricacy of conditional branches, the degree of nesting, the types
of data structures, and other system characteristics.

Computer:
(1) A functional unit that can perform substantial computation,

including numerous arithmetic operations, or logic operations
without intervention by a human operator during a run. (ISO)

(2) A functional programmable unit that consists of one or mcre
associated processing units and peripheral equipment, that is
controlled by internally stored programs, and that can perform
substantial computation, including numerous arithmetic operations
or logic operations, without human intervention.

Computer data:
Data available for communication between or within computer equipment.
Such data can be external (in computer-readable form) or resident with-
in the computer equipment and can be in the form of analog or digital
signals.
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Computer program:
A sequence of instructions suitable for processing by a computer.
Processing may include the use of an assembler, a compiler, an
interpreter, or a translator to prepare the program for execution
as well as to execute it. (ISO) See also program.

Computer program abstract:
A brief description of a computer program, providing sufficient informa-
tion for potential users to determine the appropriateness of the
computer program to their needs and resources.

Computer system:
A functional unit, consisting of one or more computers and associated
software, that uses common storage for all or part of a program and
also for all or part of the data necessary for the execution of the
program; executes user-written or user-designated programs: performs

user-designated data manipulation, including arithmetic operations and
logic operations, and that can execute programs that modify themselves
during their execution. A computer system may be a dtandalone unit or
may consist of several interconnected units. Synonymous with ADP
system, computing system. (ISO)

Corrective maintenance:
Maintenance performed specifically to overcome existing faults. (ISO)
See also software maintenance.

Correctness:
(1) The extent to which software is free from design defects and

from coding defects; i.e., fault free.
(2) The extent to which software meets its specified requirements.
(3) The extent to which software meets user expectations.

Criticality:
A classification of a software error or fault based upon an evaluation
of the degree of impact of that error or fault on the development or
operation of a system. Often used to determine whether or when a fault

will be corrected.tData:A representation of facts, concepts or instructions in a formalized

manner suitable for communication, interpretation, or processing by
human or automatic means. (ISO) See also computer data, error
data, software experience data, reliability data.

Debugging:

The process of locating, analyzing, and correcting suspected faults.

Compare with testing.

Debugging model:
See error model.

Defect:
See fault.
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Definition phase:
See requirements phase.

Design:
(1) The process of defining the software architecture, components,

modules, interfaces, test approach, and data for a software
system to satisfy sprecified requirements.

(2) The results of the design process.

Development methodology:
A systematic approach to the creation of software that defines develop-
ment phases and specifies the activities, products, verification pro-
cedures, and completion criteria for each phase.

Embedded computer system;
A computer system that is integral to a larger system whose primary
purpose is not computational, e.g., a computer system in a weapon,
aircraft, command and control, or rapid transit system.

Embedded software:
Software for an embedded computer system.

Error:
(1) A discrepancy between a computed, observed, or measured value or

condition and the true, specified, or theoretically correct value
or condition. (ANSI)

(2) Human action which results in software containing a fault.
Examples include omission or misinterpretation of user require-
ments in a software specification, incorrect translation or omission
of a requirement in the design specification. This is not a
preferred usage.

See also failure, fault.

Error analysis:
(1) The process of investigating an observed software fault with the

purpose of tracing the fault to its source.
(2) The process of investigating an observed software fault to

identify such information as the cause of the fault, the phase

of the development process during which the fault was introduced,
methods by which the fault could have been prevented or detected
earlier, and the method by which the fault was detected.

(3) The process of investigating software errors, failures, and

faults to determine quantitative rates and trends.

Error category:
One of a set of classes into which an error, fault, or failure might
fall. Categories may be defined for the cause, criticality, effect,

life cycle phase when introduced or detected, or other characteristics

of the error, fault, or failure.

F-69 P

* '~I**'



Error data:
A term commonly (but not precisely) used to denote information
describing software problems, faults, failures and changes, their
characteristics, and the conditions under which they are encountered
or corrected.

Error model:
A mathematical model used to predict or estimate the number of remaining
faults, reliability, required test time or similar characteristics of
a software system. See also error prediction.

Error prediction:
A quantitative statement about the expected number or nature of soft-
ware problems, faults, or failures in a software system. See also
error model.

Error prediction model:

FSee error model.

Error seeding:
See fault seeding.

Execution:

The process of carrying out an instruction or the instructions of a
computer program by a computer. (ISO)

Execution time:
(1) The amount of actual or central processor time used in executing

a program.
(2) The period of time during which a program is executing.
See also run tims.

Execution time theory:
A theory that uses cumulative execution time as the basis for estimating
software reliability.

Executive program:
See supervisory program.

Failure:

(1) The termination of the ability of a functicnal unit to perform
its required function. (ISO)

* (2) The inability of a system or system component to perform a required
function within specified limits. A failure may be produced when

-a fault is encountered.
(3) A departure of program operation from program requirements.

Failure category:
See error category.

Failure data:
See error data.
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Failure rate:
(1) The ratio of the number of failures to a given unit of measure,

e.g., failures per unit of time, failures per number of transac-
tions, failures per number of computer runs.

(2) In reliability modeling, the ratio of the number of failures of
a given category or severity to a given period of time, e.g.,
failures per second of execution time, failures per month.

Synonymous with failure ratio.

Failure ratio:
See failure rate.

Failure recovery:

The return of a system to a reliable operating state after failure.

Fault:
(1) An accidental condition that causes a functional unit to fail

to perform its required fun? on. (ISO)
(2) A manifestation of an error in software. A fault, if encountered,

may cause a failure.
Synonymous with bug.

Fault category:
See error category.

Fault insertion:
See fault seeding.

Fault seeding:

The process of intentionally adding a known number of faults to those
already in a computer program for the purpose of estimating the number
of indigenous faults in the program.
Synonymous with bug seeding.

Fault tolerance:

The built-in capability of a system to orovide continued correct execu-
tion in the presence of a limited number of hardware or software faults.

Formal testing:
The process of conducting testing activities and reporting results in
accordance with an approved test nlan.

Function:
(1) A specific purpose of an entity or its characteristic action. (ANSI)
(2) A subprogram that is invoked during the evaluation of an expression

in which its name appears and that returns a value to the point of
invocation. Contrast with subroutine.

Hardware:
Physical equipment used in data processing, as opposed to computer
programs, procedures, rules, and associated documentation. Contrast
with software. (ISO)
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Imperfect debugging:
In reliability modeling, the assumption that attempts to correct or
remove a detected fault are not always successful.

Indigenous fault:
A fault existing in a computer program that has not been inserted as
part of a fault seeding process.

Inspection;
(1) A formal evaluation technique in which software requirements,

design, or code are examined in detail by a person or group
other than the author to detect faults, violations of development
standards, and other problems. Contrast with walk-through.

(2) A phase of quality control which by means of examination, observa-
tion or measurement determines the conformance of materials,
supplies, components, parts, appurtenances, systems, processes or
structures to predetermined quality requirements. (ANSI 45.2.10-1973)

Installation and checkout phase:
The period of time in the software life cycle during which a software
product is integrated into its operational environment and tested in
this environment to ensure that it performs as required.

Integration:
The process of combining software elements, hardware elements, or both
into an overall system.

Integration testing:
An orderly progression of testing in which software elements, hardware
elements, or both are combined and tested, until the entire system has
been integrated. See also system testing.

*Interface testing:

* Testing conducted to ensure that program of system componlents pass
information or control correctly to one another.

Life cycle:
See software life cycle.

Maintainability:
(1) The ease with which software can be maintained.
(2) The ease with which maintenance of a functional unit can be per-

formed in accordance with prescribed requirements. (ISO)
- (3) Ability of an item under stated conditions of use to be retained

in, or restored to, within a given period of time, a specified
state in which it can perform its required functions when main-
tenance is performed under stated conditions and while using
prescribed procedures and resources. (ANSI/ASQC A3-1978)

Maintenance:
See software maintenance.
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Maintenance phase:
See operation and maintenance phase.

Maintenance plan:
A document that identifies the management and technical approach that
will be used to maintain software products. Typically included are
topics such as tools, resources, facilities, and schedules.

Model:
A representation of a real world process, device, or concept. See
also analytical model, availability model, debugging model, error
model, reliability model, simulation, statistical test model.

Module:
(1) A program unit that is discrete and identifiable with respect to

compiling, combining with other units, and loading, e.g., the
input to, or output from, an assembler, compiler, linkage editor,
or executive routine. (ANSI)

(2) A logically separable part of a program.

Mutation:
See program mutation.

Object program:
A fully compiled or assembled program that is ready to be loaded into
the computer. (ISO) Contrast with source program.

Operating system:
Software that controls the execution of programs. An operating system
may provide services such as resource allocation scheduling, input/
output control, and data management. Although operating systems are
predominantly software, partial or complete hardware implementations
are possible. (ISO) An operating system provides support in a single
spot rather than forcing each program to be concerned with controlling
hardware. See also system software.

Operation and maintenance phase:
The period of time in the software life cycle during which a software
product is employed in its operational environment, monitored for
satisfactory performance, and modified as necessary to correct problems
or to respond to changing requirements.

Operational:
Pertaining to the status given a software product once it has entered
the operation and maintenance phase.

*Operational reliability:
The reliability of a system or software subsystem in its actual use
environment. Operational reliability may differ considerably from

*reliability in the specified or test environment.

Operational testing:
Testing performed by the end user on software in its normal operatingi
environment. (DOD usage)
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Parameter:
(1) A variable that is given a constant value for a specified applica-

tion and that may denote the application. (ISO)
(2) A variable that is used to pass values between program routines.

See also actual parameter, formal parameter.

Perfective maintenance
Maintenance performed to improve performance, maintainability, or other
software attributes. See also adaptive maintenance, corrective mainten-
ance.

Performance;
(1) The ability of a computer system of subsystem to perform its

functions.
(2) A measure of the ability of a computer system or subsystem to

perform its functions, e.g., response time, throughput, number of
transactions. See also performance requirement.

Performance evaluation:
The technical assessment of a system or system component to determine
how effectively operating objectives have been achieved.

Performance requirement:
A requirement that specifies a performance characteristic that a system
of system component must possess, e.g., speed, accuracy, frequency.

Performance specification:
(1) A specification that sets forth the performance requirements for a

system or system component.
(2) Synonymous with requirements specification. (U.S. Navy usage)

Program:
(1) A computer program,
(2) A schedule or plan that specifies actions to be taken.
(3) To design, write, and test computer programs. (ISO)

Program correctness:
See correctness.

Program extension:
An enhancement made to existing software to increase the scope of

its capabilities.

Program mutation:
(1) A program version purposely altered from the intended version to

evaluate the ability of program test cases to detect the altera-
tion. Synonymous with program mutant.

(2) The process of creating program mutations in order to evaluate the
adequacy of program test data.
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Program validation:
Synonymous with computer program validation. See validation.

Proof of correctness:
(1) A formal technique used to prove mathematically that a program

satisfies its specifications. See also partial correctness,
total correctness.

(2) A program proof that results from applying this technique.

Qualification testing:
Formal testing, usually conducted by the developer for the customer,
to demonstrate that the software meets its specified requirements.
See also acceptance testing, system testing.

Quality:
(1) The totality of features and characteristics of a product or

service that bear on-its ability to satisfy given needs (ANSI.
ASQC A3-1978).f (2) See software quality.

Quality assurance:
A planned and systematic pattern of all actions necessary to provide
adequate confidence that the item or product conforms to established
technical requirements. (IEEE Standard 730)

Quality metric:
A quantitative measure of the degree to which software possesses a
given attribute which affects its quality.

Regression testing:
Selective retesting to detect faults introduced during modification of
a system or system component to verify that modifications have not
caused unintended adverse effects, or to verify that a modified system
or system component still meets its specified requirements.

Reliability:
(1) The ability of an item to perform a required function under stated

conditions for a stated period of time (ANSI/ASQC A3-1978 and
IEC 271-1974)

(2) See software reliability.

Reliability, numerical:
The probability that an item will perform a required function under

stated conditions for a stated period of time. (ANSI/ASQC A3-1978)

JReliability assessment:
The process of determining the achieved level of reliability of an
existing system or system component.

Reliability data:
Information necessary to assess the reliability of software at selected
points in the software life cycle. Examples include error data and time
data for reliability models, program attributes such as complexity, and
programming characteristics such as development techniques employed and
programmer experience.
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Reliability evaluation:
See reliability assessment

Reliability growth:
The improvement in software reliability which results from correcting
faults in the software.

Reliability model:
A model used for predicting, estimating, or assessing reliability.
See also reliability assessment,

Requirement:

(1) A condition or capability needed by a user to solve a problem
or achieve an objective.

(2) A condition or capability that must be met or possessed by a
system or system component to satisfy a contract, standard,
specification, or other formally imposed document. The set of

*all requirements forms the basis for subsequent development of
the system or system component. See also requirements analysis,
requirements pahse, requirements specification.

Retirement phase:
The period of time in the software life cycle during which support
for a software product is terminated.

Robustness:
The extent to which software can continue to operate correctly despite
the introduction of invalid inputs.

Run time:
(1) A measure of the time expended to execute a program. While it

ordinarily reflects the expended central processor time, it may
also include peripheral processing and peripheral accessing
time, e.g., a run time of 5 hours.

(2) The instant at which a program begins to execute.
See also execution time.

Seeding:
See fault seeding.

Severity:
See criticality.

Software:
(1) Computer programs, procedures, rules, and possibly associated

documentation and data pertaining to the operation of a computer

system. See also application software, system software. Contrast
with hardware.

(2) Programs, procedures, rules, and any associated documentation
pertaining to the operation of a computer system. (ISO)
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Software data base:
A centralized file of data definitions and present values for data
common to, and located internal to, an operational software system.

Software development cycle:
(1) The period of time that begins with the decision to develop a

software product and ends when the product is delivered. This
cycle typically includes a requirements phase, design phase,
implementation phase, test pahse, and sometimes, installation
and checkout phase. Contrast with software life cycle.

(2) The period of time that begins with the decision to develop a
software product and ends when the product is no longer being
enhanced by the developer.

(3) Sometimes used as a synonym for software life cycle.

Software development process:
The process by which user needs are translated into software require-
ments, software requirements are transformed into design, the design
is implemented in code, and the code is tested, documented, and
certified for operational use.

Software documentation:
Technical data or information, including computer listings and printouts,
in human-readable form, that describe or specify the design or details,
explain the capabilities, or provide operating instructions for using
the software to obtain desired results from a software system. See
also documentation, system documentation, user documentation.

Software engineering:
The systematic approach to the development, operation, maintenance and
retirement of software.

Software experience data:
Data relating to the development or use of software that could be
useful in developing models, reliability predictions, or other
quantitative descriptions of software.

Software life cycle:
The period of time that starts when a software product is conceived
and ends when the product is no longer available for use. The soft-
ware life cycle typically includes a requirements phase, design phase,
implementation phase, test phase, installation and checkout phase,
operation and maintenance phase, and sometimes, retirement phase.

J Contrast with software development cycle.

Software maintenance:
(1) Modification of a software product after delivery to correct faults.
(2) Modification of a software product after delivery to correct faults,

to improve performance or other attributes, or to adapt the product
to a changed environment. See also adaptive maintenance, correc-
tive maintenance, perfective maintenance.
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Software product:
A software entity designated for delivery to a user.

Software quality:
(1) The totality of features and characteristics of a software

product that bears on its ability to satisfy given needs; e.g.,
conform to specifications.

(2) The degree to which software possesses a desired combination
of attributes.

(3) The degree to which a customer or user perceives that software
meets his or her composite expectations.

(4) The composite characteristics of software that determine the
degree toi ich the software in use will meet the expectations
of the customer.

Software quality assurance:
See quality assurance.

Software reliability:
(1) The probability that software will not cause the failure of a

system for a specified time under specified conditions. The
probability is a function of the inputs to and use of the
system as well as a function of the existence of faults in the
software. The inputs to the system determine whether existing
faults, if any, are encountered.

(2) The ability of a program to perform a required function under
stated conditions for a stated period of time.

Software tool:

A computer program used to help develop, test, analyze, or maintain
another computer program or its documentation, e.g., automated design
tool, compiler, test tool, maintenance tool.

Source program:
(2) A computer program that must be compiled, assembled, or interpreted

before being executed by a computer.
(2) A computer program expressed in a source language. Contrast

with object program. (ISO)

Specification verification:
See verification.

Statistical test model:
A model that relates program faults to the input data set (or sets)
which cause them to be encountered. The model also gives the proba-

bility that these faults will cause the program to fail.

Structured design:
A disciplined approach to software design which adheres to a specified
set of rules based on principles such as top-down design, stepwise
refinement, and data flow analysis.
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Structured program:
A program constructed of a basic set of control structures, each
one having one entry point and one exit. The set of control struc-
tures typically includes: sequence of two or more instructions,
conditional selection of one of two or more instructions or sequences
of instructions, and repetition of an instruction or a sequence of
instructions.

Subprogram:
A program unit that may be invoked by one or more other program units.
Examples are procedure, function, subroutine.

Symbolic execution:
A verification technique in which program execution is simulated using
symbols rather than actual values for input data, and program outputs
are expressed as logical or mathematical expressions involving these
symbols.

System reliability:
The probability that a system, including all hardware and software

subsystems, will perform a required task or mission for a specified
time in a specified environment. See also operational reliability,
software reliability.

System software:
Software designed for a specific computer system or family of computer
systems to facilitate the operation and maintenance of the computer
system and associated progrun!;, e.g. operating systems, compilers,
utilities. Contrast with application software.

System testing:
The process of testing an integrated hardware and software system to
verify that the system meets it specified requirements. See also
acceptance testing, qualification testing.

Test case:
A specific set of test data and associated procedures developed for
a particular objective, such as to exercise a particular program path
or to verify compliance with a specific requirement. See also testing.

Test driver:
A driver that invokes the item under test and may provide test inputs
and report test results.

Test log:
A chronological record of all relevant details of a testing activity.

Test phase:
The period of time in the software life cycle during which the components
of a software product are evaluated and integrated, and the software
product is evaluated to determine whether or not requirements have been
satisfied.
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Test plan:
A document prescribing the approach to be taken for intended testing
activities. The plan typically identifies the items to be tested,
the testing to be performed, test schedules, personnel requirements,
reporting requirements, evaluation criteria, and any risks requiring
contingency planning.

Test procedure:
Detailed instructions for the set up, operation, and evaluation of
results for a given test. A set of associated procedures is often
combined to form a test procedures document.

Test validity:
The degree to which a test accomplishes its specified goal.

Testability:

(1) The extent to which software facilitates both the establishment of

test criteria and the evaluation of software with respect to those
criteria.

(2) The extent to which the definition of requirements facilitates
analysis of the requirements to establish test criteria.

Testing:
The process of exercising or evaluating a. system or system component
by manual or automated means to verify that it satisfies specified
renuirements or to identify differences between expected and actual
results. Compare with debugging.

Tolerance:
The ability of a system to provide continuity of operation under

various abnormal conditions.

Total correctness:
In proof of correctness, a designation indicating that a program's
output assertions follow logically from its input assertions and
processing steps, and that, in addition, the program terminates
under all specified input conditions. Contrast with partial correct-
ness.

Utility software:
Computer programs or routines designed to perform some general support
function required by other application software, by the operating
system, or by system users.

Validation:
The process of evaluating software at the end of the software develop-
ment process to ensure compliance with software requirements. See
also verification.
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Verification:
(1) The process of determining whether the products of a given phase of

the software development cycle fulfill the requirements established
during the previous phase. See also validation.

(2) Formal proof of program correctness. See proof of correctness.
(3) The act of reviewing, inspecting, testing, checkinp, auditing, or

otherwise establishing and documenting whether items, processes,
services, or documents conform to specified requirements. (ANSI/
ASQC A3-1978).

Tqlalk-through:
A review prucess in which a designer or programnmer leads one or more
other members of the development team through a segment of design or
code that he or she has written, while the other members ask questions
and make comments about technique, style, possible errors, violation
of development standards, and other problems. Contrast with inspection.
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